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ABSTRACT 

The aspects of accurate determination of Earth satellite orbits by the 
Minimum Variance Method are presented.   In addition, techniques for the 
determination of the associated physical constants, such as the coefficients 
in the Earth's gravitational potential, exospheric temperature, etc. . are 
developed.   A method for determination of the state transition matrix is 
presented.   Also include 1 are a review of the time systems employed in 
satellite orbit determination and a short discussion of the types of observa- 
tions. 

The mathematical model of the dynamical system includes nine zonal har- 
monics and up to the fourth order tesseral harmonics of the Earth's gravi- 
tational potential.   Atmospheric drag effects are included on the assumption 
that the atmosphere rotates with the angular velocity of the Earth.   First 
order solar and lunar gravitational attractions and solar radiation pressure 
are also treated.   The satellite orbits are integrated in a reference system 
which considers the precession and nutation of the Earth.   Rectangular co- 
ordinate systems are used throughout the development. 
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FOREWORD 

This report presents the analytical foundations for several computer pro- 
grams now under development.   The research is being performed for the Data 
Analysis Branch (CRMXA), Technical Services Division at AFCRL, USAF, 
L. G. Hanscom Field, Bedford, Massachusetts.   The digital computer pro- 
gramming in this research effort is being done by Bruce Clemenz and Jacques 
Fein.   The contractor's report number is ER 13950. 
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The orbit of a satellite, in a given reft.-    ce system   is determined by six 
parameters, called the oruital elements.   These elements van be determined 
from a sufficient number of other parameters obtained a^ observations    How- 
ever, the problem is usually either under- or ovcr-deten.äned.   In adaition, 
the observations contain errors.   For these reatona, normal algebraic   ,iethods 
cannot be employed, and the problem enters the realm of statistics and prob- 
ability.   Satellite observations are used not only to determine the orbit, but 
also to estimate the various physical and other constants of the dyn; nical and 
the observation systems.   Precise orbit determination and analysis uy a statis- 
tical filtering technique known as the Minimum Variance Method is the subject 
of this report. 

The motion of a satellite in an inverse-square central force fielu is repre- 
sented by conic sections.   This motion would be realized if the sole force act- 
ing en the satellite were due to a point mass or a homogeneous sphere.   In 
nature, however, the orbit of a satellite is perturbed by a variety of forces, 
e.g., harmonics in the gravitational potential, atmospheric drag, attractions 
of other celestial bodies, etc.   Consequently, the dynamical system is much 
more complicated. 

As mentioned before, the orbit of a satellite is determined by the six orbi- 
tal elements.   These elements can represent an orbit in a simple inverse- 
square central force field as well as in the actual, complex dynamical system. 
Any set of independent parameters which uniquely describe an orbit can be used 
as orbital elements.   For example, the six classical elements are: a, the semi- 
major axis; e, the eccentricity; ft, the right ascension of the ascending node; 
w, the argument of pericenter; i, the inclination; and M, the mean anomaly. 
The orbits in the present report are considered in a rectangular coordinate 
system.   Consequently, the orbital elements in this system are most conven- 
iently represented by the six components of the position and velocity vectors, 
which are thu standard elements in this analysis.   The certain numerical dif- 
ficulties experienced with these elements in the Least Squares application are 
not encountered employing the Minimum Variance technique. 

The standard reference epoch for the celestial equations in this report is 

1950 January 1, 0  UT, except as noted. 

The present report deals specifically with the orbit determination of close 
Earth satellites, including parabolic and hyperbolic orbits.   The same princi- 
ple, however, applies to satellites of other celestial bodies. 



II.   TIME SYSTEMS 

A.   MEASUREMENT OF TIME 

The accurate measurement of time has been the concern of a lather spec- 
ialized field.   However, with the advent of the artificial satellite, a new area 
has been introduced which is directly concerned with the precise aspects of 
time and its measurement.   In addition, there have been many developments 
in the time systems during the last few years.   Therefore, a review of this 
subject is necessary.   A thorough treatment can be found in Refs.  1, 2 and 3. 
The present discussion will deal only with the existing time systems and their 
application to satellite orbit determination and analysis. 

In the measurement of time, two important factors are involved.   One is 
the epoch or reference from which time is measured.   The otl.^r is the rate at 
which time is measured.   A system used to measure time, therefore, must 
be some observable pnysical phenomenon that has a well-defined epoch and 
whose rate of change is as invariant as possible.   There are seven fundamental 
time systems in existence:  ephemeris time (ET), atomic time (A.l), true 
sidereal time, mean sidereal time, UTO, UT1 and UT2.   The last three are 
subdivisions of universal time.   In addition, there are time systems emitted 
as signals on several radio frequencies throughout the world: WWV, NBA 
(United States), GBR (United Kingdom), etc. 

B.   EPHEMERIS TIME 

Ephemeris time is the uniform time of dynamical astronomy.   Theoretically, 
it is the independent time argument of the ephemer ides of the Sun, Moon and 
the planets.   In practice, it is determined from the orbital motion ot the Moon 
about the Earth.   This involves the solution of ehe equations of motion of the 
Moon.   Thus, the uniformity of the time argument will be dependent on the ac- 
curacy of the representation of the system in which the Moon moves.   Since it 
also involves observations of the Moon, additional errors are introduced.  The 
errors are not significant, and the accuracy of the determined ET is believed 
to be within a couple of seconds in a century. 

Ephemeris time would be the proper time argument in the equations of mo- 
tion of an Earth satellite.   However, its determination requires several years 
of observations and it is not practical for observing events of relatively short 
time intervals apart without an intermediary. 

C.   ATOMIC TIME 

In 1955, a precise, cesium-133 atomic resonator was introduced in Great 
Britain.   Since then, nine laboratories in five countries have been operating 



cesium resonators in a coordinated effort.   It is estimated that the accuracy of 
the cesium resonators is within 0.001 second in three years.   Because of the 
exceptional accuracy of this system (designated A. 1), the 12th General Con- 
ference on Weights and Measures, in December 1964, changed the basis of the 
definition of the second from ephemeris to atomic time scale.   Thus, a uniform 
time system has been made available which provides exceptional stability and 
convenience. 

The A. 1 system is defined as follows (Ref. 2): 

(1) A clock which keeps A. 1 time advances one second in the interval 
required for 9,192,631, 770 osciLations of cesium at zero field. 

(2) At 0h 0m0s ÜT2 on 1 January 1958, the value of A. 1 was 0h 0m0s. 

Because the atomic time system is uniform for all practical purposes and 
readily available, it is the most suitable for use as the independent time argu- 
ment in the satellite equations of motion. 

The rapid progress in atomic timekeeping is indicated by the announcement, 
even as this report was being written, that the U. S. Naval Research Labora- 
tory has installed twin atomic hydrogen masers to continuously reset the master 
clock at the U. S. Naval Observatory.   The hydrogen masers will keep the clock 
accurate to within one second in 300,000 years. 

D.    SIDEREAL TIME 

Sidereal time is directly related to the rotation of the Earth.   It is defined 
as the hour angle of the vernal equinox.   Thus, except for small motions of the 
equinox itself, sidereal time is a direct measure of the diurnal rotation of the 
Earth.   Sidereal t'rne measured with respect to the true equinox is true or 
apparent sidereal time.   If measured with respect to the mean equinox of date, 
it is called mean sidereal time.   If the meridian is that of Greenwich, it is 
called Greenwich mean sidereal time.   For any other meridian, it is the local 
sidereal time.   Because sidereal time reflects the variable rotation of Earth, 
there is no direct relationship between sidereal time and ephemeris time.   In 
orbit determination, the computation of sidereal time is required in order to 
determine the position of the observing station. 

E.   UNIVERSAL TIME 

Universal time is based on the diurnal motion of the Sun and is the 
basis of all civil timekeeping.   It involves both the rotation of Earth and the 
motion of Earth in its orbit about the Sun.   Universal time and sidereal time 
are equivalent systems and are directly related to each other by means of a 



numerical formula.   Universal time is defined as the Greenwich hour angle of 
a point on the equator whose right ascension, measured from the mean equinox 
of date, is 

Ft 18   38   45.830 t 8040iri4.542 T,, •» 0.Ö92Ö T„ (\) u u u v •* / 

Time, Tu, is given in Julian centuries of 30, 525 days of universal time elapsed 

since the epoch 1900 January 0,  12   UT.   The practical determination of univer- 
sal time is made through the intermediary of sidereal time by observing the 
diurnal motions of the stars.   The relation between Greenwich mean sidereal 
time and UT is given by the equation: 

Greenwich mean sidereal time - UT -* Ru + 12 (2) 

The sidereal times are computed in advance for successive dates of 0 UT 
from the above equations and published in the American Ephemeris and Nautical 
Almanac.   Local mean sidereal time at any particular instant is obtained from 
observations of the transit of stars of known positions.   Greenwich mean side- 
real time is obtained by adding the longitude west of Greenwich.   Then the cor- 
responding universal time is obtained by taking the difference in sidereal times 

at the instant of the observation and the computed value at 0  UT and converting 
it to UT by the known relationship.   The universal time thus obtained is desig- 
nated UTO.   Due to the aiovement of the Earth's axis of rotation, known as 
polar motion, and variation in the rate of rotation of the Earth, UTO contains 
irregularities.   Although the polar motion is very small, it affects the time 
measurements, which can be now performed with great accuracy.   UTO cor- 
rected for the polar motion to a mean Greenwich meridian is designated UT1. 

The variations in the rate of rotation of the Earth are due to many causes. 
Some of them are negligible; some of them are quite large but unpredictable. 
The seasonal variation is a periodic variation of a maximum amplitude of ap- 
proximately 0.03 second. It is a quite stable variation and can be predicted 
with good accuracy. UT1 corrected for the seasonal variations is designated 
UT2. Corrections for the years 1950 to 1902 have been computed from the 
formula (Ref. 1): 

AT = + 0*022 sin 27TT - 0&.017 cos 2irr 

- 0.007 sin 47TT + 0. 000 cos 4ffT 

Since 1962, the following formula has been used (Ref. 4): 

(4) 

where T is the fraction of the year and is zero on January 1. 

AT = + 0S. 022 sin 2TJT - 0s. 012 cos 27TT 

- 0s. 006 sin 47TT  + 0s. 007 cos 4ffT 



It is important to note that universal time is not a uniform time and therefore 
cannot be properly used as the independent time argument in the equations of 
motion.   However, UT1 is of particular significance in accurate satellite orbit 
determination.   Since UT1 is obtained by observing the rotational position of 
Earth with respect to stars, the reverse process is applied to determine the 
position of Earth from UTl. 

As noted before, only the ratio of sidereal time and universal time can be 
expressed by a numerical formula.   There are no rigorous analytical relation- 
ships for the other systems.   The difference between ephemeris time and 
universal time presently is about 35 seconds.   The difference between A.l and 
UT2 was 2.3385 seconds on January 0, 1963, increasing by about 0. 5 second 
per year. 

F.   RADIO TIME SIGNALS 

Neither of the time systems discussed above is directly available to the user. 
Instead, time signals are emitted by special radio stations (WWV, WWVH and 
NBA in the United States) in accordance with international agreements.   Prior 
to 1959, station WWV emitted time signals at a constant frequency while making 
phase adjustments of 0.02 second when necessary to keep the signals close to 
UT2.   The signals now are emitted with a frequency maintained constant each 
year but offset with reference to the atomic time standard.   The time pulses 
are kept within approximately 0.1 second of UT2.   In addition, phase adjust- 
ments of the pulses can be made if necessary.   There is no analytical relation- 
ship between WWV and UT2.   For this reason, the differences are given in 
periodical Time Service Bulletins issued by the U. S. Naval Observatory. 

The methods used in satellite observation and timing are continuously im- 
proving.   It is estimated (Ref. 5) that the position of a satellite can be meas- 
ured with an accuracy of 20 meters.   For practical reasons, the timing of a 
satellite observation is done by the clock of a station which observes the satel- 
lite.   Although the received WWV signals will be in error with respect to the 
emitted signals because of uncertainty in propagation, it is estimated (Ref. 5) 
that a worldwide tracking system can be synchronized to an accuracy of about 
0.001 second.   To fully utilize the accuracy available in precision orbit determina- 
tion, the proper corrections should be applied to the observation times to irrive 
at the correct time systems required in the analysis.   These corrections, how- 
ever, are not immediately available and in such cases they must be either 
extrapolated or the time recorded by the station clock used as an approxima- 
tion.   During the period in which there are no changes either in frequency 
or phase of the WWV signals, the recorded time will be essentially uniform, 
if the station clocks are well synchronized with the WWV.   Therefore, this 
time could be used as the independent time argument in the satellite equations 
of notion.   An error is introduced by substituting this time for UTl to compute 
the station position.   For example, the position of a station at 30° latitude can 
be in error by as much as 50 meters.   The numerical values for the masses of 

(i 



Earth and other celestial bodies are not sufficiently well known at the present 
time to be affected by the small differences in the time systems, but this may 
change in the future. 

The following procedure can be used to obtain systems A. 1 and UT1 required 
for accurate orbit analysis: 

(1) Time recorded by the station clock corrected to obtain WWV emitted 
signal 

(2) WWV emitted signal corrected to obtain A. 1 

(3) WWV or A. 1 corrected to obtain UT2 

(4) UT2 corrected to obtain UT1. 

Correction (1) includes corrections, if any, to the recorded time to obtain WWV 
received.   This time is then corrected for propagation effects to obtain WWV 
emitted.   Corrections (2), (3) and (4) are published in the Time Service Bul- 
letins.   Correction (4) can be applied by means of Eqs. (3) and (4). 



III.   SPACE REFERENCE SYSTEMS 

A.   SYSTEM REQUIREMENTS 

There are several basic reference systems used in orbit determination. 
The satellite motion itself must be ultimately considered in an inertia) sys- 
tem. The position of the observer must be referenced to a terrestrial sys- 
tem, and the observations are obtained in either a geodetic or a celestial 
system. In the final analysis, the relationship between these systems must 
be introduced. 

B.   BASIC REFERENCE SYSTEM 

The satellite orbit could be referenced to a fixed geocentric celestial sys- 
tem.   However, such a system would not be very convenient for determining 
the forces acting on the satellite because of the precession and nutation of the 
Earth.   The expressions for the forces could be much simplified if the motion 
is considered in a moving axis system defined by the true equator and equinox, 
In such a system, however, a supplementary or Coriolis acceleration is intro- 
duced.   Since the rate of precession and nutation is comparatively small, we 
will utilize a system which is considered inertial for a short period of time 
and coincides with a mean position of the true equator and equinox during this 
interval.   The satellite orbit thus is considered in a system which moves step- 
wise with the rate of precession and nutation.   The length of the interval can 
be made as short as is necessary and practical.   The only errors introduced 
will be due to the small variation of the gravitational field caused by preces- 
sion and nutation during this interval.   However, for all practical purposes, 
these errors will be negligible.   In addition to giving minimum errors, this 
system is ideally suited to the point-to-point technique of the Minimum Vari- 
ance Method and the integration method employed. 

C.   TERRESTRIAL REFERENCE SYSTEM 

A terrestrial reference system will be defined as a rectangular right-hand 
system with the origin at the Earth's center of gravity and the z-axis directed 
toward the mean north pole as defined by the International Latitude Service. 
The x-z plane will coincide with the mean meridian of Greenwich.   This defini- 
tion is purely theoretical, since the Earth's center of gravity is not precisely 
known.   For this reason, the positions given in this system will be in error and 
thus affect the satellite observations.   A method to improve observing station 
positions from orbit analysis by the Minimum Variance Method will be presented 
later in the report. 



Generally, the coordinates of an observing station are given as polar 
coordinates in a geodetic system.   The coordinates are longitude, latitude 
and altitude.   Longitude will be considered positive west for the station lo- 
cations.   Latitude is usually given as geodetic or geographic latitude.   The 
two differ due to local gravity anomalies.   Assuming that the given latitude 
is geodetic, we must obtain the geocentric latitude as a first step toward 
conversion to rectangular coordinates.   It is important to note that the given 
polar coordinates are always associated with a specific ellipsoid, defined by 
the mean equatorial radius of the Earth, R  , and flattening, f.   The values for 

the adopted International Ellipsoid of Reference are RL, = 6,378,388 meters, and 

f     1/297.   More recent determinations have given R   = 6,378,156 meters and 

f -- 1/298.3. 

The transformation from geodetic,   T\ to geocentric latitude, §, can be 
obtained by considering the geometry. 

*•- / 

Fig. 1. Station Coordinates 

Designating f   - (1 - f)   we can write: 

tan<> (p' + h) sin t> 
h cos t * p  cos <+> 

l l 
(5) 

where p , p' and h are expressed in units of R .   Introducing an auxiliary 

function, C, defined by: 

p  cos $>.       C cos T 

10 



cos * fl + fE tan  $) 
1/2 

and since p  = f C, we can express 4> as function of $: 
l Cd 

tan4> h + C tan4> (C) 

Then the geocentric radius of the observing station is: 

P  =  R_. (h + C) cos f 
cos 4> (7) 

The station coordinates in the Earth fixed terrestrial system are 

Xg   * p cos <{> cos (-A) 

yj  = p cos 4» sin(-X) 

z"   = p sin <t> 

where X is the station longitude (positive west). 

(8a) 

(3b) 

(8c) 

These coordinates are in the terrestrial system as previously defined. 
The actual Earth's axis of rotation, however, does not coincide with the mean 
axis as defined by the International Latitude Service.   It is moving about the 
mean pole in what is known as the polar motion.   This motion has the effect 
of a small variation in latitude and meridian and must be considered in ac- 
curate calculations.   The variations are regularly published by the Interna- 
tional Latitude Service.   The transformation of the station coordinates from 
the mean to the instantaneous system is accomplished by a simple transforma- 
tion: 

1 0 -x *: 

0 1 1 tf 

X '1 1 zs 

(9) 

where x and ^ are the angular coordinates of the instantaneous pole, in radians, 

D.   STATION POSITION IN THE BASIC SYSTEM 

So far the obtained position of the observing station is in a rotating Earth 
fixed-axes system.   To relate it to the previously defined basic reference 

11 



system, which tor all practical purposes is a true sidereal system, one more 
transformation must be performed. 

The Earth fixed system and the basic system have the same z-axis (axis of 
rotation).   The position of the observing station in the basic system, therefore, 
can be obtained by utilizing the true sidereal time, which is a function of the 
universal time (UT1).   This will give the Greenwich hour angle of the vernal 
equinox as computed from tb    i »llowing equation: 

-14 
(IK 

1.74GG47719 + Ü.30038809863056 d + 0.5064 x 10     d   + AA    (10) 

where ArRand AA are in radians and d in Julian days from the epoch 1950 

January 1, 0h UT.   As discussed in Chapter II, d must be expressed in UT1. 
The above equation is based on Newcomb's expression and corresponds to 
values for sidereal times published in the American Ephemeris and Nautical 
Almanac from 1960 on.   The terms due to nutation are expressed by AA. 

AA -   - 0.76700 x 10"4 sin (0.211408 - 0.00092422 d) 

.-6 
+ 0.929 x 10    sin (0.422816 - 0.00184844 d) 

- 0.907 x 10"H sin (2.247127 + 0.45994300 d) 

- 0.5662 x 10"° sin (9.776679 + 0.03440558 d) 

+ 0.560 x 10"* sin (6.248291 + 0.01720197 d) 

The station coordinates in the basic system are then: 

(11) 

y. 

cos AGR - sin A(;R   0 

sin A(;R    cos AGR 0 

0 0 1 

—        - 
X 

1 

z_ 

(12) 

E.   PRECESSION AND NUTA ttON 

The basic system, as defined previously, is essentially a true sidereal sys- 
tem.   As such, it follows the precessional and nutational motions of the Earth. 
The coordinate transformation from the reference mean equinox of 1950 

January 1, 0h UT to the mean equinox of date is accomplished by the following 
matrix: 

X Z 

Xv      Yv       Zv 

Z, 

(13) 
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where: 

• 12    2 -20 ,T 
Xv =   1-0. 2226036 x 10  " d  - 0.267 x 10     dJ 

Yx -Xy - 0,61190636 x 10"6 d - 0.5067 x lO"" d2 + 0.453 x 10~1!V 

Zx   -   _xz  =      - 0.26603997 x 10"(> d + 0.1552 x 10"H d   + 0.197 x lO"*'* da 

-12     2 -20   ,Q 
Yv   =   1 - 0.1872158 x 10     d   -0.308x10      d 

Yz   =    Zv  =      - 0.813972 x 10"13 d2 - 0.61 x 10'21 d3 

Z2.   =   1 - 0.353878 x 10"13 d2 + 0.41 x 10"21 d3 

and d are Julian days since 1950 January 1, 0h UT.   To account for the nutation, 
a transformation from the mean equinox of date to the true equinox of date is 
accomplished by the following matrix: 

N   = 

1 -An-   -Av 

A|±        1       -Ac 

Av     Ae        1 

(14) 

where A\i, Av and Ae are the terms due to nutation in right ascension, declina- 
tion and obliquity, respectively. They can be computed with sufficient accuracy 
from the following expressions 

An =  (-76.700 sir. a{ + 0.929 sin a2 - 0.907 sin <*3 - 5.662 sino^ 

+ 0.560 sin at.) x 10"b 

Av = (-33.009 sin a{ + 0.400 sin a2 - 0.390 sin a3 - 2.437 sin <*4 

+ 0.241 sin<*5) x 10 -6 

Ae =  (+44.654 cos a^ - 0.438 cos a>2 + 0.428 cos <*3 + 2.676 cos a>4) x 10 

where 

-6 

Q»j = 0.211408 - 0.00092422 d 

c*2 = 0.422816 - 0.00184644 d 

<*3 = 2.247127 + 0.45994300 d 

<*4  = .9.776679 + 0.03440558 d 

ö5  = 6.248291 + 0.01720197 d 
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Only the most significant nutation terms are considered.   However, they will 
give an accuracy of better than four meters on the Earth's surface. 

The transformation of the rectangular coordinates between two basic or 
true sidereal systems of arbitrary dates can be accomplished by the following 
matrix multiplication: 

N, P, Pf < xt (15) 

where 

or 1, ?- 

and T means the transpose of a matrix. 

In a continuous, point-to-point transformation, only three multiplications must 
be performed at every transformation, since the transpose of the previous N2P2 

matrix is the new Pj K{  matrix. 

It is convenient to consider the precession and nutation matrices as sums 
of a unit matrix and a matrix with small elements. 

Designating 

P' = P - I 

and 

N' N - I 

where I is a unit matrix. 

NP   =  (N1 + I) (P' 4 I) N'P' + P'+ N' + I 

Matrices N'P', P' and N' contain only small elements.   Consequently, fewer 
significant figures need to be carried.   The number of significant figures will 
increase for the diagonal elements only in the addition to the unit matrix.   In 
some cases, it might be possible to neglect the second order term N'P' and 
thus the matrix multiplication could be avoided completely.   Since the preces- 
sional and nutational motion is of the order of approximately 0V3 per day, the 
transformation need not be performed very often. 
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F.   OBSERVATION REFERENCE SYSTEMS 

Two types of observations will be considered:  (1) observations referenced 
to a geodetic system and (2) observations referenced to a celestial system. 
Both types are necessarily topocentr'c systems.   Types of observations refer- 
enced to a geodetic system will, generally, include elevation, azimuth, eleva- 
tion and azimuth rate, range, range rate and range acceleration.   Observa- 
tions referenced to a celestial system are right ascension and declination. 
To perform the orbit analysis, the observations corresponding to the estimated 
orbit must be compared with the actual observations in a common reference 
system.   The estimated observations from the given coordinates x, y, z, x, y, z 
are obtained as follows: 

The satellite coordinates in a topocentric system where the x-axis points east, 
y-axis north and the z-axis completes a right-handed system, are: 

and 

T 

yT 

ZT 

T 

y.,- 

= [s] 

X - Xs 

y - ys 

z - Zs 

(16) 

ZT 

= [s] 

X + W
E >S 

'E ~s (17) y -",. x, 

z 

where xs, ys, zg are the station coordinates, and coE is the rate of rotation of the 

Earth.   The matrix S is either 

or 

S  = EM 

S  = M 

depending on whether the transformation is performed to a geodetic or a geocen- 
tric system. 

The transformation matrix, M, is: 

- sin (AGR - A) cos (AGR - A) 0 

M         - cos (A.GR - X) sin <t> - sin (A(,R - A) sin 4> cos 4> 

cos (AGR - X) cos <|> sin (AGR - A) cos <t> sin <j> 

(18) 
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whore A     , A and <> are as defined previously. 

The transformation from the geocentric to the geodetic system is [H-ilonm-d 
by the matrix F 

E 

1 

L 

o 

A<}> 

ü 

-A4> !») 

where AP     r - 6 and is a small angle. 

The obtained coordinates x  , y ,, z  , x , y.« and zT of the satellite in the topocen- 

tric system allow us to compute the observations corresponding to the estimated 
orbit.' 

Observations of right ascension and declination are usually referred to a 
specific celestial system (see also Section VII B) defined by the equinox and 
equator at the beginning of a Besselian year.   This will be discussed in more 
detail in Chapters IV and VII.   At the present, we are concerned about the 
transformation of the satellite position from the basic system to a particular 
celestial system.   This can be done by utilizing the previously given precession 
and nutation matrices.   The coordinates of the satellite, as well as the observing 
station in the particular celestial system, will be: 

[psr]   [Pf   [N] (20) 

where N is the transformation matrix due to nutation, P is the transformation 

matrix from the mean equinox of date to that of 1950 January 1, 0 UT and P„T 

is the transformation matrix to the mean equinox and equator of the celestial 

reference system.   The elapsed days from 1950 January 1, 0h UT to a standard 
epoch of a specific Besselian year can be obtained from the following formula: 

d        -0.077 + 365.2422 (BY - 1950.0) (21) 

where BY is the Besselian year; 1950. 0 is a standard designation for the beginning 
of the Besselian year 1950. 

If the celestial reference system is that of 1950.0, the matrix P     need not 

be included in most cases, since the epoch 1950 January 1, 0hUT is very close 
to the standard epoch 1950.0* 
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Another method is to obtain the right ascension and declination of tne satel 
lite in the basic system and then to make the proper corrections for nutation 
and precession to obtain the right ascension and declination in the particular 
reference system of a standard epoch. 



IV.   SATELLITE OBSERVATIONS 

A.   CLASSIFICATION OF OBSERVATIONS 

Satellite observations can be obtained generally by electronic or optical 
means.   The electronic systems include pulse and Doppler radar and inter- 
ferometer-type systems.   Optical systems include visual and photographic 
observations.   Recently, promising results have been obtained  by laser sys- 
tems which provide angular and range information. 

The present discussion will be concerned with some pertinent aspects of 
electronic and optical systems providing observations in the form of elevation, 
azimuth, range, range rate, and right ascension and declination.   In addition, 
observations of elevation and azimuth rates, and range acceeration will be 
considered. 

B.   ELECTRONIC OBSERVATIONS 

From the analyst's point of view, the most important aspect of satellite 
observation is accuracy.   Errors in electronic observations arise from 
several sources:  errors in the electronic and mechanical system; errors due 
to refraction and aberration; and errors in the physical constants of the station 
location.   Errors in the electronic system are due to causes such as frequency 
drifts, time delays, insufficient resolution, etc.   Other errors are due to elec- 
tromechanical systems.   These errors can be considerable.   Some error sources 
could be eliminated to a large extent if, instead of azimuth and elevation, their 
rates were measured.   Thus, the precise knowledge of the true meridian and the 
geodetic vertical is not critical.   The bias errors in the rate measurements 
should be smaller than in angle measurements. 

Range, range rate, and range acceleration measurements rely entirely 
on the electronic system.   Thus, a source of some highly unpredictable errors 
is eliminated.   Moreover, the knowledge of the true north and vertical is not 
required.   Consequently, these measurements can be much more accurate than 
the angle measurements. 

One of the chief sources of error in electronic measurements is refraction. 
It is generally distinguished between tropospheric and ionospheric refraction. 
It has been shown (Ref. 6) that using frequencies in the kilomegacycle range, 
the ionospheric refraction is practically negligible and the tropospher. n refrac- 
tion can be calculated with fairly good accuracy, particularly if the local at- 
mospheric conditions are taken into account. 

The refraction error can be reduced to negligible proportions if a principle 
used in the Transit System (Ref. 7) is utilized.    By simultaneously employing 
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I wo coherent frequencies, the actual refraction can be computed to a first order 
accuracy and the measurement corrected.   In the present state of art, the 
theoretical accuracies obtainable for range and range rate measurements should 
be of the order of 5 m and 0.2 m/sec.   However, the actual accuracies depend 
heavily on stringent calibration, maintenance and operation procedures, and, of 
course, the type of equipment. 

C.   OPTICAL OBSERVATIONS 

Some of the most accurate satellite observations are obtained by optical 
techniques. Specifically, a network established and operated by the Smith- 
sonian Astrophysical Observatory (Ref. 8) can provide observations with an 
accuracy of about ±2 seconds of arc. 

Essentially, the precision method consists of photographing satellites 
against a star background.   Since the star positions can be determined with high 
accuracy from star catalogs, the satellite right ascension and declination can 
be obtained with a comparable accuracy.   The final accuracy of optical meas- 
urements, however, is dependent on the reduction method and may vary by 
orders of magnitude.   Among the disadvantages of this method is that the pre- 
cise reduction requires elaborate procedures and, therefore, the precise data 
are not immediately available.   Another disadvantage is that the satellite 
can be photographed only at certain times when it is in sunlight and the observer 
in darkness.   This can be minimized, if the satellite carries its own light source 
or by laser techniques.   One of the chief advantages of this method is the elimi- 
nation of many sources of error.   The chief on-site requirement is the precise 
timing of the exposure.   The actual computation of the mcasuivim-1it.-> can be 
done under more exacting conditions. 

D.   OBSERVATION CORRECTIONS 

The radar as well as optical observations must be corrected for aberration 
and refraction.   Because of the relatively high velocities of satellites, the aber- 
ration effect will be significant in high precision measurements.   This correc- 
tion may amount to a few seconds of arc in angular measurements and several 
meters in range measurements.   The correction is done on the basis of the 
satellite velocity vector and the speed of light. 

A much more significant correction is required for refraction effects.   In 
high precision measurements of right ascension and declination, obtained by 
the photographic method, the major part of the refraction is corrected indirectly 
The remaining uncorrected part is the parallactic refraction which arises from 
the fact that the satellite is at a finite distance, while the stars are practically 
at infinity.   Reference 8 gives the following expression for parallactic refrac- 
tion correction: 

, / -0.1385 r    t ;)s A 
&ß --435.0 ll - e / (22) f rT cos z   \ / y   ' 
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where /. is the zenith distance and r    the range. 

The refraction correction for elevation, range and range rate in radar 
measurements can be computed by the following method (Refs. 9,  10, 11). 

The troposphere is divided into m incremental layers and the change of the 
index of refraction in a layer is assumed linear. 

Fig. 2. Refraction Configuration 

The average index of refraction as proposed by the NBS Central Radio 
Propagation Laboratory is given by the following expression 

r)n   --   1 + 0.000313 exp (-0.14386 hj (23) 

where hn is the altitude in km. 

Designating 

Nn   =   % - 1 

the total bending through the troposphere divided into m incremental layers is 

n=m 

y = 
2(Nn-Nn„) 

tan En -4 tan En<1 
(rad) (24) 

n=0 

21 



The elevation angle error is then 

ytanEni -<Nn-*U + y?2 
AE r + tan Em- tan E0 

and the range error is 

n m 

Ar 

n-0 

(N   + N     ) (h     - h ) 

sinEn + sin En + 1 

(rad) (25) 

(26) 

The Doppler velocity can be corrected to a first order approximation by 

Af,   =  VA crT sin<}> (27) 

where <$> is the angle between the line of sight and the velocity vector, V. 
A#T is the angle between the line of sight and the velocity component in the 

direction of the ray path at the target.   It can be determined from the expres- 
sion 

a o    -  arc cos 
R 

R, 
cos (EQ - AE) - arc cos 

nmRm ° 
(28) 

The above expressions are valid for cases where the frequency is in the 
kilomegacycle range and the ionospheric refraction effects can be neglected. 
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V. APPLICATION OF THE MINIMUM 
VARIANCE METHOD 

A.    FORMULATION OF THE PROBLEM 

The knowledge of an orbit implies the knowledge of the mathematical model 
of the dynamical system and certain constants associated with this system. 
The mathematical model can be developed by theory, but the constants must 
be determined by experiment.   They are not observed directly, but can be de- 
termined knowing the mathematical relationships between the observed param- 
eters and the constants.   In our analysis, a part of the constants is represented 
by the so-called state variables, which in our case are the instantaneous orbital 
elements.   The other part consists of the various physical constants of the 
dynamical and the observation system.   Together they represent a generalized 
state vector. 

The instantaneous orbital elements themselves are not constants.   However, 
they are rigorously related to another set of orbital elements at some other 
time chosen at an epoch.   The relationship between the two sets is defined by 
the mathematical model.   Thus, the epochal set of the orbital elements, which 
are constants for the given system, completely determine the instantaneous 
orbital elements at any other time. 

An approximate orbit can be obtained by assuming a simple inverse-square 
central force field.   Various methods can be used for this purpose depending 
on the type of observations.   With this starting orbit, an improved estimate of 
the orbital elements and/or the various physical constants can be obtained by 
more sophisticated methods.   The application of the Minimum Variance Method 
for this purpose is the subject oi this chapter. 

There are three sources of errors associated with the orbit estimation 
process:  incomplete representation of the dynamical system, errors in the 
generalized state vector and errors in the observations.   The improvement of 
the dynamical model by statistical methods is beyond the scope of this report. 
Statistical knowledge about the errors in the generalized state vector and the 
observations, however, can be utilized in orbit improvement from observed 
data.   The process, which is called statistical filtering, is applied to obtain a 
best estimate of the generalized state vector on the basis of the deviations of 
the actual observations from the estimated orbit.   Once a good estimate of the 
orbit is obtained, past or future instantaneous orbital elements can be found by 
prediction and smoothing methods. 

Orbit determination has always been a major problem in dynamical as- 
tronomy.   Methods, notably, the Least Squares, have been in use for approxi- 
mately a century.   With the advent of the artificial Earth satellite, these methods 
were adapted for the new application.   However, problems encountered in 
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practical space engineering applications often present quite different situa- 
tions.   A major factor is the electronic computer. 

In dynamical astronomy, relatively few observations are obtained over an 
extended period of time.   In many engineering applications, a large amount of M 

observations are obtained within a comparatively short time period.   The elec- 
tronic computer offers immense possibilities, notably, its computing speed 
and storage capacity.   However, new approaches may be necessary to take full 
advantage of these capabilities and also to comply with some of the numerical 
problems arising from the large amount of data.   It is believed that the Mini- 
mum Variance Method offers great possibilities in many space engineering ap- 
plications. 

B.   SOME PRACTICAL ASPECTS 

The basic difference between the Minimum Variance Method and the Least 
Squares Method is that, in the Minimum Variance Method, the orbit is continu- 
ously updated on the basis of each new observation or set of observations.   In 
the Least Squares Method, a single solution is obtained for all the observations 
simultaneously.   In each case, an inversion of a certain order matrix is in- 
volved.   The order of the matrix, in the least squares case, is determined by 
the number of the parameters being estimated.   On the other hand, the order 
o( the matrix to be inverted in the minimum variance case corresponds to the 
lumber of simultaneous observations,   AS a matter of fact, all the simultaneous 
observations need not be processed simultaneously, and, if desired, each can 
be handled separately.   Thus the inversion becomes trivial.   Since the inversion 
of high order matrices is not a simple matter, the advantages of the Minimum 
Variance Method are obvious. 

Since the orbit is updated on each new set of observations, in many applica- 
tions, the observations need not be stored in the computer, thus saving consider- 
able storage space.   The updating process is systematic for any number of ob- 
servations, either too few or too many to obtain a deterministic solution for 
the generalized state vector.   Also, the process can be interrupted at any time 
for any reason giving the optimum estimate at this point, and resumed at a 
later time.   The Minimum Variance Method allows considerable flexibility in 
the method of application to suit the particular requirements. 

In addition to the important practical aspects, the method is able to consider 
correlated measurement errors from one observation time to another. 

C.    LINEAR CONCEPTS 

The theoretical development of the linear filtering theory used in this appli- 
cation is given by Kaiman in Ref.  12 (see also Ref. 13).   An application of the 
method is presented in Refs,  14 and 15.   The following presentation will deal 
with the special case of satellite orbit determination and analysis. 
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The mathematical model of the dynamical system is represented by second- 
order differential equations of the form 

x(t) =f[x(t),x(t)] (29) 

where 

x - X, 

LX3J 
are the three position coordinates. 

The individual terms of the right-hand side will be considered in a subse- 
quent chapter.   For the time being, it is sufficient to know that the equations 
are nonlinear.   To enable the application of the linear filtering theory, the 
equations must be linearized and a solution obtained.   The linearization can be 
accomplished by expanding the equations in a Taylor series about a reference 
trajectory and retaining only the first order terms.   Thus 

x(t) =f[x(t), x (t)] + F(t)Ax(t) 

where 

F(t) 

3f3 
0x7 «> 

dl 

ax. 

(30) 

3fj dil 8fj 

3x. oXp oXo 

3f2 

<t) 

and 

Ax(t) = 

Ax, 

Ax2 

Ax, 

Ax2 

Ax„ 

The differential equations for the reference trajectory are 

xK(t) = f[xR(t), xR(t)] (31) 
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If wc subtract these from the perturbed equations, we obtain the linearized 
or perturbation equations 

Ax(t) - F(t> Ax(t) (32) 

The three second-order equations can be reduced to six first-order equations 
by writing them in a standard form. 

The fundamental solution to the obtained homogeneous equations is called 
the state transition matrix and designated $.   The solution cnn be written in the 
form 

Ax(t) = r(t,t0)Ax(t0) (33) 

We now have obtained an algebraic matrix equation where the state transition 
matrix t relates linearly the vector Ax at time t0 to the vector Ax at time t. 

In a general case, a vector Ax* will consist of all the parameters to be deter- 
mined, and the matrix t* will be of a corresponding order. 

The $* matrix possesses some important properties, which are summa- 
rized as follows: 

$*(t, t) = I = unit matrix (34) 

f*(tr tj t*(tr V = ?*(tr tj) (35) 

In practice, the matrix t for the six orbital elements can be obtained by 
several methods.   In our case, it will be obtained on the assumption of an 
unperturbed orbit in an inverse-square central force field.   Experience has 
shown that this is a good approximation for orbits where the atmospheric 
and gravitational perturbations are not significant.   For very low altitude 
orbits, the approximation may be insufficient and corrections for atmospheric 
effects are necessary or the matrix must be obtained by other methods. 

The equations that relate the observations to the instantaneous orbital 
elements and constants, in general, are also nonlinear.   They can be linearized 
by a similar Taylor series expansion about a reference trajectory, and the 
equations can be written in the standard matrix form 

Ay(t)-H*(t)Ax*(t) (37) 

where Ay is the deviation of the actual observations from the observations 
associated with the reference trajectory.   H* is the matrix of partial deriva- 
tives of the observations with respect to the instantaneous orbital elements and 
constants.   The partial derivatives comprising the H* matrix can be obtained 
and evaluated at the observation times in a straightforward manner. 
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The third important matrix used in the filtering equations is the covariance 
matrix.   At any point in the filtering process, we have only an estimate of the 
instantaneous orbital elements and the constants.   We can consider them as 
random scalars or components of a random vector.   Thus the errors in the 
random variables, which are deviations from an expected or mean value, will 
also be random variables and as such will have a zero mean. 

C)AX*\  -0 (33) 

The estimate of the individual random scalars is not known with the same 
accuracy.   However, it can be described by the so-called variance which is 
defined as 

a  -€<J[AX* -€AX*]"| (39) 

where € Ax* is the expected value of the deviations, and is zero in our case. 
The standard deviation is defined as the square root of the variance. 

The individual components of a random vector can be affected by the other 
components which is called correlation.   Thus, instead of a single variance 
associated with a random scalar, a random vector has, in general, variances 
and covariances.   The covariance matrix, P*, is defined as 

P* = cov <Ax*, AX* > = ei Ax* Ax*T> (40) 

T where Ax* means the transpose of Ax*. 

The diagonal elements of this matrix are the variances and the off-diagonal 
elements are the covariances.   If the components of the random vector are 
uncorrelated, the off-diagonal elements will be zero.   If the covariance matrix, 
P* (t ). is given at time, t0, the covariance matrix, P* (t), at time, t, can be 

obtained by use of the state transition matrix $* 

P*(t) - covJAx*(t), Ax*(t)l = c JAx*(t) Ax*T(t)\ 

J~ ~**<t, t0)P*(t0) ** (t,t0) (41) 

Similar considerations apply to the covariance matrix of the observation 
errors, Q. 

D.    FILTERING EQUATIONS 

The statistical filtering theory is based on the assumption of a linear multi- 
dimensional dynamic system, which can be represented by the following model: 
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x*(t)     f*(UJX»(y (42) 

y(t)     H*(t) x*(t0) • u(t) (43) 

where x*(T.) is an »«vector and represents the generalized state vector, y(t) is 
a vector representing p independent measurements, and u(t) is a p-vector 
representing an independent gaussian random process or noise.   The t>* and 
H* matrices aiv n x i\, and p x n matrices, respectively, which have been 
discussed before.   Since the actual system is nonlinear, the above equations 
represent the linearized or perturbation equations.   For the sake of simplicity, 
the perturbations are represented by x and y instead of Ax, Ay. 

These perturbations are referred to the estimated orbit.   Assuming that 
at time, t    , an estimate of the state vector is known based on the previous 

K * 1 

k observations, a better estimate can be obtained which includes the k + 1 
observation.   Under the linear assumptions, this can be expressed as 

where x designates the estimate of x.   The first term on the right-hand side 
is simply the transfer of the state vector x*(t) at time *k to time tR+1 by the $* 

matrix.   Thus it represents the estimate of x* at tk   based on the first k 

observations.   The second term represents the contribution of the new obser- 
vation at time tkl.   The quantity in the brackets is the difference between the 

k th observation and the observation based on the estimated orbit.   The matrix 
K*(t    ) is a weighting matrix, sometimes called the optimum gains matrix, 

since it is obtained by optimizing a loss function. 

As represented in the above equation, the assumed model of the dynamical 
system is linear. However, in orbital analysis, it is advantageous to use the 
actual dynamical system represented by the nonlinear differential equations 
of motion to propagate the estimated state vector from one observation to the 
next. Also, the exact equations can be used to obtain the observations associ- 
ated with the estimated orbit. With these modifications, the equation reduces 
to 

;* <W; K
*"K..) [y'<W - y'M <45> 

where y' is the actual observation and  y' is the observation based on the 
estimated orbit.   Thus the linearized equations are used only to compute the 
weighting matrix and the covariance matrix.   The advantages of this approach 
are that the process is less sensitive to errors in the initial conditions»   The 
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nominal orbit, being continuously updated, does not deviate excessively from 
the true orbit.   Consequently, the chance of violating the linearity assumptions 
is minimized. 

Kaiman (Ref. 12) obtains an optimal weighting matrix K* for an independent 
gaussian random process utilizing the Schmidt orthogonalization procedure in 
a multidimensional space.   The optimal filter or weighting matrix is obtained 
utilizing the first and second-order statistics:  the expectation of the state vec • 
tor and the covariance matrix. 

-l 

K*<V,> - **<W H* <W [H*<W P
*K? "*

T<W] <43> 

where P* is the covariance matrix of the state vector and H* is a matrix of 
the partial derivatives of the observations with respect to the components of 
the state vector.   The matrix P*(t. ,) is obtained transferring the P*'(t) matrix 

by means of the state transition matrix $* and adding the error matrix Q* 

p*<w - **<v,- v p*'<v **X,. y - Q* <w <47> 
Knowing the weighting matrix K*(t  ,), a new covariance matrix at time t    , 

K*1 k-1 

which includes the statistics of the new observation, can be obtained by the 
recursion equation 

P*'^) = P*(tk^) - K*(tkM) H*<tk,j) P*(tk+1) (48) 

Since the state vector, generally, can be composed of many parameters, the 
matrices will be of a large order, affecting the numerical operations. 

In Ref. 14, it is shown that a simplification of the matrix equations can be 
achieve1:] if the errors in the observations are uncorrelated from one observa- 
tion time to another.   It is likely that for the same station, the observations will 
be correlated in this sense because of imperfect calibration, etc.   In most 
cases, it will be sufficient to represent such errors by an algebraic function. 
Then the constants in this function can be regarded as bias errors, included 
in the state vector, and thus estimated along with the other constants.   The 
remainder of the errors then can be considered as a Gaussian random vector 
and thus uncorrelated between two observation times.   With this assumption, 
the equations reduce to 

*(W = K<tw> [y'<W - y'KA <49> 

K<W = *K) "T<W [«<W P<U KT(tk.,) • Qd^)]"1 (so) 

2!) 



r at ,)   P(tk>1) -• K(t, ^ ii(t, j) p<tM) (52) 

where all die matrices, except the Q mat   x, pertain to the system .state vector 
old)' .   The Q matrix represents the covariance matrix of the observations. 
If the .suite vector consist* of the six orbital elements, the matrices will never 
be lurgei man ü x (i.   The matrix to bo inverted will be of an ardor equal to 
the number of the simultaneous observations. 

The inversion of the matrix is an important operation and deserves further 
analysis.    It the observations are linearly independent, i.e. , if none oi the 
observed scalar random variables is a linear combination of the others, the 
matrix v, ill be invertible whenever P and Q are positive definite,    By virture 
of definition, the covariance matrices P and Q are positive definite, and thus 
the combination is invertible.   The practical aspects oi inverting a matrix, 
however, are quite different from those of pure theoretical considerations. 
It has been pointed out in Hei". 10 that the differential correction matrix tends 
to become singular as the time arc of the filtering process increases.   The 
singulariU is apparently also affected by the choice of the orbital elements. 
In the Least Squares Method, this will prevent a solution.    In the Minimum 
Variance Method, the situation is somewhat different.    First, as pointed out 
earlier, the order of the  matrix to be inverted is equal b> the number oi 
simultaneous observations and, if desired, all the observations at a particular 
time r.'-r.1 not be considered simultaneoesly.   The inversion thus can be made 
trivial.   Secondly, in most practical eases, the observations can be. indeed, 
coiisid* ii d independent i» . i rne..nielaU'd fron« one ohserv lion thee to another. 
The o ri.erix thus will be y diagonal matrix,  representing i:ie valances of the 
ob-»er.ati-.»i.h.   As the filUanng progresses, the orbit will become known with 
higher ae .uracy.   In other words, the elements of matrix P will assume smaller 
Kiineiv  ii \vilucs.   Consequentix ,  the dominance of the Q mutri.s '.'.ill become 
more i i. - viunced, and since it i- a diagonal matrix, no in\ersiou problem will 
be ene< nwtered,    Thus tU; .'lu-icf of the orbital element is not critical and 
ma\ be made on the basis oi other considerations,   in the present ease, the 
orbital elements are the position and velocity coordinates.   In a program 
piesei'ilv under development    no inversion difficulties have been encountered. 

K.    HUKCTlON OF OBSERVATIONS 

Tin   . h nmum Variance Method is applicable to normally distributed random 
- t ror  .     it is inevitable tint, in the observation data, there will no observations 
weich i .r    in  reason or .cioiiuT will he greatly in error.    As seen they should 
iM be !.;, hided in the- estimation, and some kind of criterion should be employed. 
This : :• ' be  lone as follows. 

At a. \  time during tin« filtering,  an observation with a standard error must 
lall within a region represented by the sum of the covariance matrices of the 
estimated orbit and the observations. 
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R   H(tk) P(tk) H (y + Q(y (.73) 

This covariance matrix represents an error ellipsoid of the observations 
(Ref. 17).   Because of the covariance elements, the principal axes of this 
ellipsoid do not coincide with the axes system in which the observations are 
represented.   Since the matrix is real and symmetric, it can be diagonalized 
by a similarity transformation.   The diagonal elements thus would represent 
the excursions of the observations in the direction of the principal axes.   How- 
ever, the identity of the original observations would be lost. 

Leaving the R matrix intact, we can partition it to a single element, and 
consider only the diagonal elements.   These are called marginal deviations, 
and represent a case where the deviation of an individual observation is con- 
sidered under the assumption that all the other deviations can be infinity.   In a 
general case, instead of a hyperellipsoid, this will give a rectangular hyper- 
parallelopiped.   The square roots of the diagonal elements of matrix R thus 
will represent the standard deviations, a, under these assumptions.   Now, any 
actual observation which exceeds no, referred to the estimated orbit, can be 
rejected.   In the case of a good representation of the mathematical model and 
knowledge of the observation errors, n could be 3 (3o).   It must be emphasized 
that the covariance matrices do not represent absolute numbers and, therefore, 
should be Seated accordingly. 

F.   DETERMINATION OF CONSTANTS, TYPE 1 

The previously given matrix equations can involve operations with large 
order matrices, in case constants are estimated simultaneously with the six 
orbital elements.   However, recognizing the nature of the constants, certain 
simplifications can be introduced and the order of the matrices reduced. 

There is a certain class of constants which are not functions of certain 
observations.   In this case, the partial derivatives of the observations with 
respect to the constants are all zero.   Constants of this type include the coef- 
ficients of the zonal harmonics, exospheric temperature of the atmosphere, 
Earth's mass, etc., in combination with observations of right ascension, 
declination, azimuth, elevation, range, range rate, azimuth rate and elevation 
rate. 

Returning to the previously derived equations for x*, K*, and P*, we see 
that no difficulty is encountered writing x* in a partitioned form 

£ 
X 

A c = Kc 

n ^n 
L   J _         _ 

[y - r] (54) 
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where x, c, n, now denote eMimaie^ of perturbation vectors represemiu 
six orbital elements, constants and measurements, respectively. Thus 1 
vectors can be estimated hid. nvndoi.tly. It remains to investigate the K* 
P* matrices.   We can write 

nting the 
the 

and 

P*(t       ) **(t -   t    )    i*':l    :    •'     it        .   tt)    •    M*U        ,  ) 

where P*(tJ is in a partitioned form 

(55) 

P*(U 

Ipt p»   pi 

p' p' p;n 

pi pi p' 
xn    <• n    n 

(56) 

and P^, P', Pn'are the covariance matrices ol the orbital elements, constants, 

and observations, respectively,   The submatrices with double subscripts 
designate the covariances between the three groups.   Since a covariance matrix 
must be symmetric, the oii-din/onal submatriei s must be transposes of each 
other.   The state transition matrix t*(t    . t ) can be expressed as 

K'l 

t*(t .t.) 
I: • 1 -\ 

k : o 
X        XI 

)      I o 

I)     0 '.» 

(57) 

where the &   matrix is the stale transition submatrix of the orbital elements. 
The state transition submatri.  oi the constants is a unit matrix I.   ft.Js a sub- rxc 

matrLx relating the state of the elements at time t    , as affected by the state 

of the constants at t .   The other subinutricojs are zero because:   (1) there is 

no correlation between the observation errors at time t,, which are assumed 

Gaussian random errors, and the orbital elements or constants at time tk .; 

(2) the constants are not affected by errors in the orbital elements', and (3) the 
observation errors are uncorrclated from one observation time to another. 

The covarian-t matrr, <,<•• », -in ; . 

f 0   0   0 i 
i i 

Q*(t    )     '   0     0     0 (58) 
k • r     j i *   ' 

Lo   o   iy \ 

and represents the observation errors. 
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Now, performing the required operations we obtain 

P*<tM) 

(* P'+ 4 P'T) $T + ($ P   + *   PM frT       Up' rx     *xcxc;    x       ^x*xc        xc c'4xc|      |_*x^xc 

[pT  *T
+ P' *T 1 

I    XC      X C     xc J 

Kxc*? 

0 

0 

0 

Q' 

(59) 

Thus the transfer of the covariance matrix P*'(t.) can be accomplished in 

p 
X Pxc 0 

xc Pc 0 

0 0 Q' 

parts 

Pxc = Ä + \F< 
Px     =(^+^^J)^+PxC   £ 

p   = P' 

*T 

(60) 

(61) 

(62) 

Note that P;    = Pc. 

In the expression for K*(tk+1), the quantity in brackets is 

H* P* H*   = [H H H I    x     c      n 1 J Px Pxc° [H*l 
PT 

xc Pc o Hi 
0 0    Q? Hi 

In our case Hc = 0, and performing the matrix multiplication 

H* P* H*T = Hx Px  Hx   + HnQ'H^   = R 

Thus the weighting matrix is 

or 

T 
PxHx 

K* 3 p* H*
T 

R1- PTHT 
xc    X 

T 
Q'Hn 

K 
X 

T 
- Px   Hx R1 

Kc ^xc   "x R-1 

W -1 

(63) 

(64) 
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Performing the operations in the recursion equation we obtain 

p*» = p* _ K* H* P* - 

Px p 
XC 

0 ~P HTR! 
X     X [«• 

0   I'n] rp 
X P*c 0 

p 0 - 
T    T    - 1 

P» PT 
XV Pc 0 

Ü 0 Q< LQ'Hr
nR' 0 0 Qf 

Px Pxc° 

PxJ P    o 
0 0       Q' 

(Px Hi    R^P*)       (P    Hx    R^P^)    (Px   H;   R-2HnQ'; 

(Pj Hi   R-l Hx P )      (Pj Hx
r Rl Hx Pxc)     (Pxc. H^ R ' HnQ<) 

I (<y tfn R-l Hx Px) (Q< HT
n R [ Hx Pv) (Q' if R l HnQ') 

Now the updating of the P* matrix can be done by parts.   Thus the covariance 
matrix of the orbital elements is 

P'    = P    -P    HrR_1HP    - P    - K    HP 
X X XX XX X XXX 

(65) 

The updating of the covariance matrix of the constants is accomplished by 
the equation 

p*    = p    - p T H
T
  R"1 H   P     = P.  - K  H   P 

C C XC V x      xc c C       X      xc 
(66) 

It should be noted that the second term on the right-hand side is strongly 
dependent on the correlation between the constants and the orbital elements. 
If the correlation is weak, the updating will be very ineffective, as will be the 
estimation of the constants. 

Similarly, the covariance submatrix P    will be updated as follows 
T ,-1 P     = P     -PH     R-'HP      = P      -KHP 

XC XC X X X       XC XC XX       Xl 
(67) 

The other submatrices P     and P     need not be updated because they will 

vanish in the transformation. 

G.    DETERMINATION OF CONSTANTS, TYPE 2 

A similar simplification of the filtering equations can be accomplished if 
the constants to be estimated are not related to the orbital elements, i. e., 
they are not included in the equations of motion.   Constants of this type include 
the coordinates of observing stations and bias errors in the observations. 
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Again we can write the covariance matrix in a partitioned form: 

P*'(tk) = 

P' 
X 

iiT 

P' 
XC 

P' 
c 

P' en 
T 

P' xn 

P'n cn 

Pn_ 

(68) 

where the submatrices are defined previously, 

The state transition matrix now will be 

** <wv = 
X 

0 0 

0 I 0 

0 0 0 

(69) 

Regarding the correlation from one observation time to another we have 
made the same assumptions as in the previous case with the following modifi- 
cation.   The observation errors now are assumed correlated and represented 
by an error function.   The constants in this function are represented in the 
covariance matrix Pc and estimated together with the other constants of this 

type.   The uncompensated observation errors are considered Gaussian random 
errors and as such uncorrelated from one observation time to another. 
The transition submatrix $„„ will be zero because the constants do not enter 

into the equations of motion.    The covariance matrix Q* is the same as pre- 
viously. 

Performing the required operations we obtain 

\p& *p' 
X    XC 

0 p 
X 

p 
XC 

0 

XC     X Pc' 0 = PT 
XC 

p c 0 

0 0 QT 0 0 Q' 

p*(t ) = 

and the transfer of the covariance matrix can be done in parts 

(70) 

(71) 

(72) 

(73) 

The weighting matrix K* can be obtained, first, considering the expression in 
the brackets. 

p 
X 

= tp' 
X   X X 

p 
XC 

= f 
X 

P' 
XC 

P 
0 -pt: 
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,T T H* P* H*    - (Hv Px  > HcPj, >HV (H„ Pxc + HCPC »Hc   • HnQ«H; 

The weighting matrix is then 

K*     P* H*T R l 

,T p H : + P   H x     *x *xc       C 

PJHT + P.   H 

T  -1 

T 
r    —C 

Q'HI 

R 
-I 

R 

or 

The recursion equation then can be obtained as follows: 

P*' = P* - K* H* P* - 

(74) 

(75) 

P     P     0 

P T p     0 

0     0     Q' 

Which gives after performing the required operations 

K   = P* - KX(HX Px • HCPJ ) 

PxciPxc-Kx(HxPxc+HcPc   ) 

K    =Pc    -Kc("xPxc+HcPc   ) 

Kx [HXH€HJ P      P     0 X           X c 

Kc P T  P      0 *xc   *c     v 

K^ 0       0      Q' 

(76) 

(77) 

(78) 

Thus the order of the matrices is reduced, and, for the diagonal submatrices, 
it will be equal to the number of the orbital elements or constants, respectively, 
For the covariance matrix P*, the submatrices forming the rows and columns 
are simply transposes of each other.   The submatrices p*  and P*  and their 

transposes in P*' need not be computed since they will vanish in the transfor- 
mation.   In either case, the maximum order of matrix R, which must be in- 
verted, is equal to the number of simultaneous observations. 

The equations as derived in this and the previous section are for a simul- 
taneous estimation of the orbital elements and constaits.   Obviously, the whole 
process can be separated in two parts.   First, the constants may be assumed 
known and a best fitting orbit determined as in a normal orbit determination 
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routine.   The residuals then can be attributed to the constants and the filtering 
repeated considering only the equations pertaining to the constants.   The corre- 
lation between the orbital elements and the constants thus will be ignored but 
the estimation process will be simplified. 
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VI.   STATE TRANSITION MATRIX 

A.    FORMULATION OF THE PROBLEM 

One of the matrices in the filtering equations is the state transition matrix 
of the six orbital elements.   This matrix can be obtained for the exact mathe- 
matical model by the so-called secant technique, i.e. , perturbing the elements 
one at a time and obtaining a solution by integration.    For observations close 
together, and using the Minimum Variance Method in a point-to-point mode as 
outlined previously, this can be a very efficient method.   If the observations 
are far apart, the method is very time consuming. 

The matrices used in the filtering equations are not arrays of absolute num- 
bers, and so do not require absolute precision.   Therefore, a good approxi- 
mation of the actual dynamical system is permissible.   Experience has shown 
that such good approximation is a simple inverse-square central force field. 
The resulting orbits are a circle, ellipse, parabola or hyperbola,depending 
on the eccentricity.   Even with this approximation, the analytical solution has 
presented considerable challenge.    As a result, many analytical methods have 
been developed and published.   A pure, closed form analytical solution, how- 
ever, is not always the most satisfactory for the electronic computer.   The 
computer is most efficient for repeated solutions of simple arithmetic equa- 
tions, which save storage space and computation time.   The method that 
follows has been developed with these considerations in mind. 

The problem can be stated as follows.   Given the six orbital elements in 
the form of rectangular coordinates  x,, yv z{, xp yp iv at time t„ find 
a state transition matrix which is defined as one relating small perturbations 
of the state at time tx to the resulting perturbations at time t.,. A fundamental 
solution will be obtained, first, for an elliptic orbit, and then"extended to 
circular, parabolic and hyperbolic orbits.   Since orbits in a central force 
field are planar, the solution can be obtained in three steps:   ^1) in-plane 
perturbations; (2) out-of-plane perturbations; (3) transformation to the 
original axes system. 

B.   ELLIPTIC ORBITS 

The direction cosines of an axes system in which the xu-axis is directed 
toward the point on the orbit at time t , yu~axls is m the orbital plane such 

thaty > 0, and z^-axis completes a right hand system are, first for the x 
axis 

?, 
xl y\ Zl — '    17, - ;     

'     ?! = r, 'l r, r, 
l i l 

(79a, b, c) 
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The direction cosines for the z -axis are obtained by taking the vector product 

i'j x vr   Then 

«H 

vi zi " ^1 Vi 
(80a) 

n, = 
zixi"xizi (80b) 

f = xiy. ->'ixi >3  (SOC) 

1 

where 

dl     ^^l2!-2!^)'^^^!^,^)2   M*,^  -^X^2] 
.1 1/2 

Similarly, the direction cosines of the yj-axis are obtained from the 

vector product of the unit vectors in the direction of z^-and x^-axes. 

C2= ly-j- f3 Hj (81a) 

V    *3V   ?3   ?! (81b) 

?2= ^VMi 
(8M 

The velocity components in the new planar axes system are 

r • 
x 

y. 

5. "i fi 
r • ~1 

x
il 

yi 

f. i_, ?2 
zi 

(82) 

also        y     =  z     a- z     - 0 (83) 

We can now compute a set of orbital elements which define the planar orbit 
(see Appendix). 
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A =  1 - 

B  - 

M- • t 

X      X 
"l -1 

y_ 
i 

M- > . > 
X 

• y-. 

(84) 

(85) 

(86) 

A and B give eccentricity 

e  =  (A  + B") (87) 

Rotating the planar axes system so that the x-axis points toward the peri- 
center, the direction cosines of the new system are 

Sa       e 
B 

(88a, b) 

and the normalized coordinates of the initial point in this axes system are 

x 

x. = "c ?3     >      Vi c- "• (89a, b) 

We can now find the complementary angle 

e + (l - e2)xj 
6,= arctan 7      W^ 

(1 - e)    y 
(90) 

The eccentric anomaly is 

7T 

E, = Y - ei      if y, > ° 

E, = f f   - ei   ^ y, <  o 

(91a) 

(91b) 

The mean anomaly for the initial point is from Kepler's equation 

M.    = E.   -   e sin   E. 
i i i 

(92) 
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Now the eccentric anomaly for the final point can be obtained by an iteration 
method.    For a first approximation 

K M 
At (93) 

where 

K 
(l - e:>) K 

1/2 

and At  =  t., - t1 

and the solution can be obtained to the desired degree of accuracy by success- 
ively computing 

M.,     =  E.,  - e sin E.; (94) 

Ato     =   K    (M,   - Mj) 

At - At 
E 

%        K   (1 - e cos E2 ) 

(95) 

(96) 

where the subscript o designates the previous estimate. 

The position and velocity of the final point in the planar axes system 
can be obtained by solving the following set of equations 

x,  = 

cos E.   -   e 

1 - e 
(97a) 

sin E 
y. 

(l- e ) 

(=: ?,- y> n • )c 

> i 

a 

(97b) 

(98a) 
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V 

X 

2 

'a -  <••* 

I;MX   + y 

Br   -y 
2      J- 

(*) 

1/2 

(98b) 

(99) 

(100a) 

A r   - x 
2 

y   = - 
"2 (*) 

1/2 
(100b) 

This process must be repeated either four or eight times, perturbing 
successively x^ ,   y^_  , x^ , y     , and starting with Eq. (84).   Since the 

perturbation of y^    means the reorientation of the axes system, the perturbed 

velocities x     and v     must be transformed in the new axes system, before 

solving for the elements A, B, C, by the matrix 

AY 

x 

Ay 

(101) 

where Ay     is the perturbation and 
l 

•-, •#•<) 

1/2 
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After obtaining the final values x    , y    , x    , y    for this case, they must 
"2       w2        W2       w2 

be transformed into the original system by multiplying by the transpose of this 
matrix. 

Each perturbation will give the partiais of x     , y    , x    , y    with respect 
^2        u2 U2       ~2 

to the particular perturbation.   Thus 

Ax x    - x 

0 
2n 

1 I     Ax Ax 
~1 "l 

, etc. 

where x is the nominal value of xti . 
2n * 

A state transition matrix for a planar orbit in the x   - y^ - zu axes 

system can be written as 

<j> = 

>21 *22 ° ^4 *25 ° 

I ° ° *33 ° ° *3K 

!*4I *42 ° °44 ^45 ° 

*5I %2 ° ^54 «55 ° 

[0 o *M 0 0 %b_j 

(102) 

The first, second, fourth, and fifth columns of the matrix have been obtained 
by the perturbation technique.   The indicated elements in these columns n   3t be 
zero because, for a planar orbit, the in-plane perturbations cannot cause out- 
of-plane deviations.   It remains to determine the third and the sixth column 
which is due to the out-of-plane oi Azu and Aiu perturbations.   The main 
effect of these perturbations is to tilt the resulting orbit with respect to the 
original orbital plane.   For small perturbations of z^ , and z^ , the tilting 

angle and the increment in total velocity is small.   To a first order approxi- 
mation, assuming that the cosine of small angles is equal to one, they will 
have no effect on the xw and y^ coordinates.   Thus the indicated elements 
in columns three and six are assumed zero. 
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Considering a new axes system with the Xj-axis displaced by Az    and 

the new orbital plane determined by the new velocity vector v    ~Az 
~i       ~i 

we can obtain the direction cosines of the new z"-axis neglecting higher 

order terms 

Az 
i 

? = - X 

x Az 
Y]   =         &z - 

x    y «*-.    y 

C = 1 

Because of orthogonality, a projection of coordinates in the new system 
on the original z^-axis will be 

Az /Az x    Az 
1      -   i. 1 ! z x    +   —. J— 

We previously established that, because of the small angles, 5T^   = xu    and 

y      = y       to a first orrbr approximation.   Now if z     =0  (for a planar orbit) 
u2 ^2 "2 

1 

By comparing this equation to the third row in matrix <J>, we obtain 

AZ 

+         2 
X 

"2 1        2 
33      AZ 

and                  ] 

t             2 

X 

y^2 

X        V 
1            1 

'3b      Az • 

*1 

(103) 

(104) 
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By a similar process we obtain 

Az x        xy 
U.. <*. W W 

2 2 12 

ft1»" ^Z X X Yw, 
1        I       II 

(105) 

Az        y 

(106) 

Thus all the elements in matrix 4) are known.   Forming a matrix X from the 
previously computed direction cosines 

€, S2 ?3 0   0   0 

n. ri2m3o o o 

X 
*| ^2 ?3°    °    ° 
0 0 0   ?j C2 ?3 

0 0 0  rjj *?2 V3 

o o o r. r2 ?3 

(107) 

We can now obtain the state transition matrix in the original rectangular coordi- 
nate system 

t = x 4> x T 
(108) 

The general procedure is valid for all eccentricities with exception of the 
particular computations as outlined next. 

C. CIRCULAR ORBITS 

In the expressions for the direction cosines £a and *7a, the eccentricity e 
2 •> */2 

appears in the denominator.   However, because e is obtained from (A  + B")     , 
no numerical difficulties will be encountered for small eccentricities as long as 
a sufficient number of significant figures are carried. Obviously, circularity is 
a relative matter.   Thus at some point the orbit can be assumed circular. 
Since a circular orbit has no pericenter, we can assume an orientation of the 
x-axis to coincide with the initial point.   Therefore, the direction cosines are 

Ja -1,  1=0 (109a, b) 

and the final eccentric anomaly is 

v   -4t 
E2 - Kc 

(110) 
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The rest of the solution is the same as for the elliptic case. 

D.    PARABOLIC ORBITS 

A parabolic orbit has an eccentricity, e = 1.   The chances of a pure parabolic 
or a pure circular orbit occurring in computations are low and, as pointed out 
previously, in fact, is a relative matter.   In the assumed rectangular coordinate 
system, the solution for a parabolic orbit can be obtained in a closed form. 
First, the normalized area swept out by a radius vector from pericenter to the 
initial point is (see Appendix) 

y      y x 
A
. 

r—• -v- <m> 

and the area swept out to the final point is 

A
2 

= Ai J &L (U2) 

where 
Kc 

K. • • fr) 

1/2 

from which the coordinates of the final point are 

h- 
*/3      r       /    .    \„^i/3 

6A2 4 /36Ä?., H lY2 +   6A2 - (36A* + lY*2 (113a) 

x2-\ (J -y2
2) (113b) 

The rest of the solution is the same as for the elliptic case. 

E.   HYPERBOLIC ORBITS 

Hyperbolic and elliptic orbits are the most important orbits.   A hyperbolic 
orbit is one with eccentricity, e > 1.    The solution for a hyperbolic orbit must 
be obtained by iteration.   We can write the normalized area swept out by the 
radius vector from pericenter to the initial point 

A. = e\4 -jzmln B. <U4> (e -i) 
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where U2 
B, = e2 - (e2-l) xx - <e2-l)   ^ 

For a first estimate of the final point we assume a parabolic orbit.   The esti- 
mate of the swept-out area to the final point is 

A> - v —r1— <115> 2(e-l)Kc 

whe re 
1/2 1 •'   ri      '' - F) 

The estimated y, and x are obtained from Eqs. (113a), (113b) and an improved 
A,, obtained from 

A> -eV"T~Tti lnB2 <116> 
"    (e2-l); 

whe re 

B2  ,e-(e2-l)x2  -(e
2-l),/2y2 

The time corresponding to the estimated final point is 

At0 = Kc (\2 -Aj) (117) 

The iteration is done on y  successively solving Eqs. (116). (117), (118), and 

(119) until the desired degree of accuracy is reached. 

B2 

y, -- y, + 

o r(e2-l)x2o-el (At-AtQ) 

e 
x, - - 

e2-l 
(119) 

The remaining solution is the same as for the elliptic case. 

Experience has shown that the initial estimates of x  and y  in the hyperbolic 

case are unimportant and even grossly inaccurate estimates will give rapid 
convergence using the above method.   Therefore, the use of the parabolic 
solution for the initial estimates is justified. 
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VII.   EQUATIONS OF OBSERVATIONS 

A.   REQUIREMENTS FOR ANALYSIS 

To obtain the residualb or differences between the observed and estimated 
observations, it is necessary to compute the associated observations from the 
estimated orbit.   In addition, the filtering equations require the H-matrix which 
has been defined as a matrix of the partial derivatives of tie observations with 
respect to the state variables.   As shown previously, the 1 -matrix can be par- 
titioned to simplify the matrix operations.   It was also noted that for a large 
class of constants the Hc-submatrix was either zero or a unit matrix.   The 

relationship between the observations and the orbital elements as well as the 
associated Hx-matrix remains to be determined. 

B.   ANALYTIC EXPRESSIONS 

To obtain the expressions relating elevation and azimuth to the orbital ele- 
ments, we will utilize the equations given in Section III-F.   Knowing the satellite 
coordinates xT, y  , z   in the topocentric axes system as defined previously, 

elevation and azimuth can be expressed as 

z 
E = arc tan 

A = arc tan 

(4+ 4l 
x 

(120) 

(121) 

and the partial derivatives with respect to the six orbital elements in the form 
of position and velocity coordinates are 

3E 
9x 

3E 
ay 

aE 
3z 

3E . 
dx 

aE 
*y 

T 

fe - 4 
M iT 

aE 
u = 0 

-x. 
T 

"X T 

T T 

'T 

(122) 

(123) 

49 



and 

M 
ax 

az 

rT 4 

Sll     S2l 

S12     S22 

S13     S23 

yT 

-X 
T 

(124) 

8A      dA _ 8A _ 0 

dx       dy      3z 

where 

(125) 

r   = (x*+ y2 • ztf 
T       \ T      ^T        T/ 

and the matrix S has been defined previously in Section III-F. 

The expressions for the estimated right ascension, a, and declination, 6 , 
must be obtained in the particular celestial system in which the observations 
were obtained.   It must be noted that, in practice, the observed right ascension 
and declination are obtained in an astrometric system, which is defined by the 
coordinates given to a number of stars.   Thus the difference between a celestial 
and an astrometric system will be due to the errors in the astrometric system. 
With this understanding, we will designate the celestial system as the reference 
system. 

After transformation of the satellite and station coordinates into the required 
celestial system (see Section III-F), the estimated right ascension and declina- 
tion can be obtained from the following relationships. 

Q --- arc tan 

6     arc tan 

(126) 

(127) 
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where the subscript, 0, indicates satellite coordinates in the celestial system 
and subscript sQ indicates station coordinates in the celestial system. 

(Xo " 'S)'   + (^ " \1 
1/2 

(12») 

The partial derivatives are obtained from the above equations giving 

[  da] 
dx 

l 
A. £2l 

da 
9y 

2 
rx 

0 ** 
iu 

and 

u<u     uij  _ da    da „ Q da =9ö 
3z     3x 3y     32» 

35 
ax 

ay 

do 
3z 

--^r WT 

T 

3x     3y       3z 

where 

[L] 

4 P JL 11 X12       13 

•*21 ^22 *23 

L*3l *32 *33 

T      T 
= PST  P    N 

(129) 

(130) 

(131) 

(3 32) 

is the transformation matrix from the true equinox and equator of date to the 
mean equinox and equator of the particular celestial system (see Section III-F), 
The radius 
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i'-r 
X 

11/2 

(Z0 - Zso)2 (133) 

The matrix L normally will be close to a unit matrix, and in many cases, 
the multiplication of the partial derivatives by this matrix may not be necessary. 

The elevation and azimuth rates can be obtained by differentiation of the ex- 
pressions for E and A with respect to time. 

E = 
z   r     - z   r 

T   XT       T    XT (134) 

T 

A = 
xTyT-yT

xT 
2 2 xT+yT 

(135) 

and the partial derivatives of the elevation rate with respect to the orbital ele- 
ments are 

3E 
ax 

d| 
ay 

3E 
az 

= ~[sj 
T 

z   x   - r     (*T rxT " rxT X-P 
T    T       XT 

-2xTE 

ZT ^T "  (v   r     - r     Y ) 
rXT    T    XT        XT 

(rXT + 2zT E) 

XT 

rXT T 
(136) 

aE 
ai 

3E 
ay 

aE 
a£ 

-rts]' 

T   T 

XT 

y   z 
T    T 

XT 

XT 

(137) 

Similarly, the partial derivatives of the azimuth rate with respect to the 
orbital elements are 
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öA 

dk 
ay 

M 
dz 

9A 
9x 

3Ä 
3y 

dk 
di 

1 

x2 + y2 

T      *T 
w 

- (yT - 2A xT) 

(xT-2AyT) 

T      •'T 

[s]1 - X. 

where 

/ 2 2 2\1'2 

r      = (x   + Y   + z   l 
T \ T      JT T J 

XT 

'XT 

= (xT + yT 
2V/2 

x^x   + y   y 
T    T       T    T 

r 
XT 

(138) 

(139) 

and the matrix S has been defined previously (see Section III-F). 

Next we will consider the expressions for range, range rate, and range 
acceleration, which are, respectively 

(140) rT = (x2 + yT
2 + z^2 

rT = rr (xT ij. + yT yT + zT zT) 
T 

= j- [(x - xs) (x +«E ys) + (y - ys) (y - o>E xs) + (z - zs)z] (141) 

(^-^^)+<x-v(s"*4*) + r
T =f 
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+ (y2-4 x^My-yJCy-^ %) 

+ z2 + (z - z ) z - f; (142) 

Where co   is the rate of Earth's rotation, coE = 0.000072921150 radians per mean 

solar second.   The subscript s indicates station coordinates. 

The partial derivatives of range with respect to the orbital elements are 

3*V T 
ax x - X s 

8r^ T 

ay rT y-ys 

3r 
T 

3z 
z-zs 

i—  _ l—       -i 

(143) 

ar 
T 

ax ay 
5 
az = o (144) 

and the corresponding derivatives of the range rate 

<x+wE ys) ---(x-Xg) 
af 
T 

ax 

af 
T 

ay" 
l 

az 

(y-wE xs) -r-(y-yJ 

Z - — (Z  -  7 ) 

(145) 

r *K T 
ax* x - xs 

af 
T 

ay 
l 

y-ys 

dr 
T 

dz 
Z"Zs_ 

(146) 
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Finally, the derivatives of the range acceleration are: 

r 
or 

T 
ax 

T 

ay 

ar 
 T 
az 

T 

T 

df 

' dr \ 

i 
- r- (x - X.) 

- \ (y - ys 
(147) 

W-^TTW-V1-*) 

8f 

äx" 

5 
ay 

a*f 
 i 
az 

X - 
T  (X - Xs) 

y - — (y - ys) 

T 

(148) 
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VIII.    EQUATIONS OF MOTION 

A.   ASPECTS OF THE MATHEMATICAL MODEL 

The mathematical model of the dynamical system is expressed by the 
equations of motion with terms representing the various forces acting or. the 
satellite.   The main forces acting on a close Earth satellite are due to Earth's 
gravitational field, atmospheric drag, Sun's and Moon's gravitational fields and 
solar radiation pressure.   The effect of these forces can vary considerably, 
depending on the particular orbit.   For example, a circular orbit of an Earth 
satellite at 800 km altitude will be perturbed by a maximum of about i. 5 km 
due to the second harmonic in the Earth's gravitational potential, while the 
maximum perturbation due to the combined gravitational attraction of Moon and 
Sun will be less than E meter.   The perturbations due to atmospheric drag 
and solar radiation pressure may be of the same order of magnitude at this 
altitude, while at low altitudes, the effect of drag will provide the principal 
force .   Therefore, for 3 close Earth satellite, the perturbations due to the 
gravitational attraction of the Moon and the Sun, and the perturbations due to 
the solar radiation pressure may be computed considering only first-order 
effects. 

The equations of motion tor a close satellite are written in the previously 
defined basic axes system, 

*-XG + VXe+Xc + XsR <149a> 

y=YG+YD+Yo+Yc+YsR <149b> 

i=ZG+ZD+Z0+ZC+ZSR <14**» 

The terms with subscripts G, D , o , c and SR represent the components of 
acceleration due to Earth's gravitational field, atmospheric drag, Sun's 
attraction, Moon's attraction and solar radiation pressure, respectively.   For 
accurate computations, the independent time argument in the equations of 
motion must be in a uniform time scale, such as the atomic time (see Chapter 
H). 

We will now develop the terms in a form convenient for integration in rec- 
tangular coordinates. 

B.   EARTH'S GRAVITATIONAL FIELD 

The mathematical representation of the Earth's gravitational field is ex- 
pressed by means of the gravitational potential function which can be written 
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°-s ! + V y ( -LJ    Pn (Sin « <Cnn C0S m * '   SnmSin m *> (150) 

n=lm = D 

Cno
=-Jn   -Cn,  Sno -0 

where \± - G M_ 

Jn, Cnm, and Snni are numerical coefficients, RE the mean equatorial radius of 

the Earth, r the distance of the satellite from the center of the Earth, 4> the 

latitude, and P• the associated Legendre polynomial 

Pn(x) = (lV)    ——- (151) 
dx 

where Pn is the Legendre poly nominal.   The longitude \ is to be counted posi- 

tive to the east in this application. 

The harmonics represented in the gravitational potential function are called 
spherical harmonics (Ref. 18).   If 0 < m < n they are called tesseral harmonics 
as a special case of the spherical harmonics.   If m = 0, they are called zonal 
harmonics, and if m = n, they are called rectorial harmonics.   The gravitational 
potential for bodies with spherical symmetry can be expressed by the zonal har- 
monics only, i.e., the potential is a function of latitude and independent of longi- 
tude.   For bodies of arbitrary shape, the potential must include the tesseral 
harmonics, which are dependent on both latitude and longitude. 

The Legen • re polynomials are computed from the general expression: 

( n .   .n-2 
p       1 - 3- 5--- (2n-l)    /z\   .  n (n - 1) /z\ 

n 1.2-3---n \\x)      2 (2n- 1)^17 

+ n (n - 1) (n - 2) (n - 3j   / z\n"4  _     ( 152 
2 • 4 • (2n - 1) (2n - 3) \x) \ y      ' 

The components of acceleration due to the gravitational potential are 

XG=f (153a) 

Y   = |S (153b) 
G     ay 
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z -52 (153c) 

Before we differentiate the potential function, we will write U In the following 
form 

u-^uz + uT (154) 

where n/r represents the potential of the total mass concentrated at the center 
of the body.   The potential functions representing the zonal and tesseral har- 
monics are U2 and UT, respectively.   By differentiating p/r 

9X \T)  ~ "      ': 3 
(155a) 

til 
„3 ay yr) = " m 

(9-3 dz 

(155b) 

(155c) 

where 

and 

2 2 2 2 r   = x   + y   + z 

8r_x        9H = y_        §r = z 
8x    r '     3y ~" r •      dz    r 

Now, computing the Legendre polynomials and substituting Into the potential 
functlon,we obtain for the first nine zonal harmonics 

uz       r      2 \ r 

${$ [»(?)' -3.©'.,] 
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4 W H)'-°"(i)'*•»(?)'-'] 
S$f Hi)'-•(t)s -»(iT- -s] 

-j    |6435^Y - 12,012^Y + 6930 (|Y - 1260 (|Y + 35 

J 
+ 

R     (     E 
+ 128   \ r 

m\-f)    L36'465(r)9 - 77'220(?)7 + 54'054(fJ - M.M0(iJ 

I 945 | 
( 

(156) 

The partial differentials of the above function with respect to x, y, z can be 
written in the form 

TT = ^IFA ai + W (157c) 

where I -g—J   designates the partial derivative of U   with respect to r when z 

is kept constant, and I-ST-J   the derivative with respect to z when r is kept con- 
stant. \dz h 

By performing the differentiations we obtain 

L(-f (!)'•!] 

•fry [(-«(?)'•$(!)]', 

•ft? [(-¥)©'*W(Sf *W]v-} 
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and 

feu, 
2 

''•Ik 
+ $f [(-f) ©'*©#- '" 

Comparing the two derivatives and designating 

--»! 

••.,..1 

4 = -39.375 (|)   + 26.25 /|Y - 1. 875 

= -86.625 ßj + 78.75 (|Y - 13.125 | 

= -187.6875^Y + 216. 5625 (|Y -59. 0625 (|Y +2.1875 

= -402.1875(~\  + 563. 0625 (*Y - 216. 5625 0£\ + 19. 6875 | 

(-Y + 1407.65625 (|Y - 703. 828125 (|Y 

(|Y -2.4609375 

(|Y +3418.59375^|Y  - 2111. 48437 f|Y 

(f)'- 

= -854.648437(^1   +1407.65625 

,2 
+ 108.28125 

f   =-1804.25781 
9 

+ 469.21875 27.0703125^ r 

we can write 

fdU, 

"5r 1--5 [&)\'.•£}" fr) f9J9 (158) 
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'dV 

dz •i 

r" ftf^.&y« ®v. (159) 

and, designating the two functions in the brackets as F   and F , respectively, 

we can express the accelerations due to the zonal har_nonics as 

au_ 
dx 

- X    = -^ F 
/ 3      1 r 

(IGOa) 

ay Z r3    ' 
(160b) 

au 
3z z 2 ^r    l      r2/ 

(160c) 

We will now develop the tesseral harmonics considering the gravitational 
potential up to the fourth order harmonics. 

u  -t 
T      r 

n*4        n        /o   vn 

2  2 (T) p>n*><c» m cos m A + Snm sin m \) nm 
n = 2     m=i 

(161) 

For integration in rectangular coordinates, it is convenient to express the 
trigonometric functions in terms of x'\ y", z", which are the satellite coordinates 
in an Earth fixed terrestrial system.   The integration itself is done in the basic 
system defined in Section III-B.   The required coordinate transformations are 
given in Section III.   To facilitate writing we wiii adapt the notation 

x s x" 

y SyM 

z s z" 

With this notation, the trigonometric functions can be expressed as 

sin 4> = - 

cos o = JjL +YL 
1/2 
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where 

? 2 2 ,J 

r   = X   + yc + z~ 

The associated Legendre polynomials then are 

.2   .      2 
P      = 3 

2 

x +y 

, ...    . _.* 
1 p-       3(5z2-r2)(x2

+v2) 
3       " 2 r3 

(x2 + y2)' 

2 .      z (x2 + y2) 

r3 

P„3    = 15 ' 3 r3 

pi       5 z (7 z2 - 3 r2) (x2 t A
1' 

*4 2 4 r 

2   _ 15 (7z2 - r2) (x2 + y2) 
4        2 r4 

P     = 105 
4 
,3 „„aidjjd 

P<  =1o5(x^y2)2 

r4 

Similarly, we can express the longitude dependent functions In terms of the 
rectangular coordinates. 

Then we can write 

U   = n(f+f    +f     ff    +f     +f    + f    +f    ) (162) 
T X 22 31 32 33 41 42 43 44 ' *        ; 
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vvh«;v 

f22 = try , [cn <x2-y-) + s- <2xy>] 

'»-fej1? [°„ <x2 - yV %> M \     /     r 

f3:,  =(T)    T[C33X<x2-3y2) + S»y(3x2-y2)] r 

'., • ft) 5UZ4xEi P» • *s-'] 2r 

R \4   ,r m 2       :> 
*«'(-&    1M7Z   :r-)    fr»   (X2 - yV S42  (2xy)] 

f«=(^)^   [c43x(x-3yVS43y(3x-/,] 
r 

v4 
f«   = (T)    *?   [C44    (X4   "   6x2y2   + y4> + S44    4Xy (X2  * y2)] 

Performing the differentiations we obtain 
2 

°UT Jl* K       / r     2 2 2   1 2 2   ) 
xr= aT * —^-{p» x C2r  ' 5 (x     y"»] + S" 2y <r  " 5X >} 

3fi R3 

E 
.9       I 2r 

15K R3 z 
4- a— 

9 r 

lc3,  [5x2 (r2 - 7z2) + <5z2 - r2) r2]+ fij^ Bxy (r2 - 7z2)i 

Jc32  x [2r2 - 7 (x2 - y2)] + S2   2y (r2 - 7x2)} 
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15M- R . 
r^{C33   [**    (X"   " y2) " 7X2   (X2   " 3y2)]+ S33   Xy  t6r'   ' 7(3X'   " y2)]\ 

5M R   Z 

2r 11 * [?z2 1
       j C.  |   ?z' (r2 - 9x2) - 3r2 (r2 -7x2) 1+ S41   21xy (r2 - 3z2)J 

15M- R 
—IT" lc42 x [7 fr2 -9z2) <*2 - y2>+ 2i>2 <7z2 •r?)] 
2r 

+ S42 2y [7x2 (r2 - 9zV ;" (7z2  - r2)]} 

{c43   [r
2 (x2 - y2) - 3x2 (x2 - 3y2)] + S43 xy [2r2 - 3 (3x2 - y2)]J 

315^ P.   z 
E 

105*1 R      / r -, 
 -£-  |C44  x iy (x2 - 3y2) - 9 (x4 - 6x2y2 + y4)J 

r 

4- S44  4y [r2 (3x2 - y2) - 9x2 (x2 - y2)] j 

8UT       3^RE    i r       2 2 ,1 2 2) Y
T 

= a7= -r^ {c22 y [-2r •5<x- y2)]+ s22 
2x <r - **>} 

(163) 

3^RV 

2T 
{c31 [5xy (r2 - 7z2)] + S3l [5y2 (r2 - 7z2) + r2 (5z2 - r2)]} 

15M R   z 

15M R 

5M R   z 

5— |c32  y [-2r2 - 7 (x2 - y2)] + S32   2x (r2 - 7y2)} 

|c33 xy [-6r2 - 7 (x2 - 3y2)] + S33 [3r2 (x2 - y2) -7y2 (3x2 -y2)]} 

—&- {c41   21xy (r2 - 3z2) + S4l   [7z2 (r2 - 9y2) + 3r2 (7y2 - r2)] j> 

15M R 
—\f lC42  y [7 <r* " 9z2) (x2 - y2) - 2r2 (7z2 - r2)] 
2r        l 

+ S42  2x [V (r2 - 9z2) + r2 (7z2 - r2)]} 
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315p R   L  i n \ 
1      «Je,. xy L-2r2 - 3 (x2 - 3y2)J f S4;. [r2 (xb - y2) - 3y2 <3x2 - y2)] j 

r 

105H- R4 

SH 4x [r2 (X2 - 3y2) - 9y2 (x2 - y2)]} (164) 

aU 15p R~ z 
Z
T 

= ir = —T- ic22 <x" - y'> - s„ <2*y>] r 

15p R3 z 

2r9 
(3r2-7z2) [C31x + S3ly] 

15p R^ 
1     (r2 - 7z2) [C    (x2 - y2) + S3, (2xy)J 

r 

105p R3 z 
E [C33x(x2-3y2) + S33y (3x2 - y2)] 

15p R4 

2r> 
f-   (14z2r2-r4-21z4)[C41 x + S41 y] 

315p R4 z 
+ £— 

2r11 
(r2 -3z2)  [C42(x

2-y2) + S42(2xy)] 

105p R4 

r11 

945p R4 z 

(r2 - 9z2 ) [C43 x (x2 - 3y2) + S43 y (3x2 - y2)] 

(165) -j^- [c44 (x4 - 6x2y2 + y4) + S44 4xy (x2 - y2)] 
r *- 

The accelerations due to the gravitational potential then can be written 

X,. = -^+X    +X.r (106a) 
r 
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Y    .-.-Hi  rY   + Y (166b) 
V.        r3       V.     X

T 

Z, «-KS + Z   + Z (166c) 
(. ^3 £ i 

C.   ATMOSPHERIC DRAG 

The acceleration due to drag on a satellite is a function of atmospheric 
density, P, relative velocity of the satellite with respect to the atmosphere, 
v , satellite mass, m, drag coefficient, CD, and reference area, A. 

The atmospheric density can vary considerably and is rather difficult to 
evaluate with an accuracy necessary for precise orbit determination, particularly 
at lower altitudes where its effect is large.   It is a function of altitude, exospheric 
temperature (e. g. Ref. 19), and the relative position of the Sun. 

If the density is given, the expression for the acceleration is 

pv2   C-A 
a        '—D_ (167) 

D       2       m 

The relative velocity, v , can be obtained on the assumption that the atmos- 

phere rotates with the same angular velocity as the Earth.   The relative velocity 
components in the basic axes system then are 

vv = x + w y (168a) 

vy = y-a)£x U68b) 

v   =Z (168c) 

Where w   is the angular velocity of the Earth's rotation. 

Then 

vr = (vx
2 + v2  + v7

2 )/2 (169) 

and the components of the accelerations in. the basic axes system are 

Xo = "^r^ (170a) 
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C   A 
Y pv   v   -7T— <l7üb> I' r    v    2m 

D.   SUN'S GRAVITATIONAL ATTRACTION 

The perturbing action of the Sun on a close satellite orbit can be expressed 
by the so called disturbing function.   If the ratio of the satellite distance from 
the center of Earth to the Sun's distance is sufficiently small, the disturbing 
function can be expanded in power series which converge rapidly.   The disturbing 
function is given in a general form as 

/i     xx   +yy   +zz \ 
R ^(i-      r3       j (171) 

where 

H ,= GM , 

and x, y, z and x , y. , z   are the satellite and Sun's coordinates, respectively. 

Ais the distance between the satellite and the Sun, 

A2 ~(X-X f r (y-y.f + (z#-z„)2 (172) 

The Usturbing function can be expanded in powers of r/r   (Ref. 20) giving 

».^ffeJ(i^4)-ö(!'»'se-|.o.e)...: (173) 

where the functions in the brackets are the Legendre polynomials which were 
treated in Chapter VIII, Section B. 

8 is the angle between the directions to the satellite and the Sun. 

Consequently, 

xx   + yy   + z z 
cosO -      -     •—  <174) rr 
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and we can write the disturbing func.Aon neglecting all higher order terms as 

c    r3 2r2 
(xxQ + yyQ + z z0)2 - | (x2 + y2 + z2) (175) 

The accelerations due to the Sun's attraction then are obtained by differentiation. 

8R        M-r 

8R0     J*o 
0 ~ ay" *7s v 

3r f0«l0
+nno + f^x 

3r mc (^o+ nf,Q+ py- y 

Z- = 
3R        a 

o •       0 
8z 3r fn «t+ Hi» + prv O v^^o        o 

"o 
)-j 

(17oa) 

(176b) 

(176c, 

where g, n, £, and f , n ». (L are the direction cosines of the satellite and the 

Sun's radius vector, respectively. 

The direction cosines of the Sun can be obtained with sufficient accuracy 
from the following equations. 

$   = cos i>p 

*U = sin vp cos e 

(177a) 

(177b) 

(177c) K~ = sin v sin e 

where the Sun's longitude, v  , from the mean equinox of date is 

vs = 4.8883394 + 0.017202791 d 

+ 0. 03345 sin (6.2482906 + 0. 0172019697 d) (178) 

and the mean obliquity of the ecliptic, € , is obtained from 

€ = 0.40920619 - 0.6218433 x 10** d (179) 

The Sun's distance from the center of Earth can be obtained in kilometers from 

rQ = 1.496 x 108   11 - 0.016725 cos (6.2482906 + 0.0172019697 d)J     (180) 
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These expressions are based on the fundamental ephemerides as given in Ref. 1. 

The angles are in radians and d is in ephemeris days from 1950 January 1,0   E. T. 

E.   MOON'S GRAVITATIONAL ATTRACTION 

Since the Moon is much closer to the Earth than the Sun, the convergence 
of the series in the disturbing function will be slower.   Therefore, for higher 
altitude satellites and accurate orbit computations it may be necessary to con- 
sider more terms.   To a first order accuracy, we can write the accelerations 
as obtained in the previous section. 

X, = 
3R 

äx" 3 r. 
3r tfa+nvflQ-*! (181a) 

Y. - 
3R 

ay" 

H- 

T- 
3rnc (e^r>V!^-y (181b) 

Z- = 
9R 

"ay" 
3r \ («c+ nV ^)- Z 

(181c) 

Where ?, r\y £ are defined in the previous section, and ? , r\  , j?   are the 

direction cosines of the Moon's radius vector from the center of the Earth. 
They can be computed from the following expressions 

?. = cos A..rcos ft - 0.99596 sin AT sin ft (182a) 

n.= cos e (cos A.   sin Q + 0.99596 sin \Tcos ft) 

- 0. 08976 sin « sin XT (182b) 

L= sin € (cos \T sin Q + 0. 99596 sin \T cos Q) 

- 0. 08976 cos e sin \T (182c) 

where e is the mean obliquity of the ecliptic given by Eq. (179). 

A-is the angular position of the Moon measured in the Moon's orbital 

plane from the ascending node on the ecliptic, and is obtained from the ex- 
pression 
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\- 0.91215551 f 0.23089572 d+ 0.10980098 sin (3.7617316 

+ 0.22802714 d) (183) 

ft is the longitude of the ascending node of the lunar orbit on the ecliptic, 
measured from the mean equinox of date. 

^ = 0.21140807 - 0.0009242193 d 

The lunar distance can be computed from 

rc = 384400  [l - 0.054900489 cos (3.7617316 + 0.22802714 d)l 

(184) 

(185) 

In the above equations, the angles are given in radians, r: is in kilometers, 
and d is defined in Section VIII-D.   The higher order terms have been omitted 
but the equations are sufficiently accurate for our purposes. 

F.   SOLAR RADIATION PRESSURE 

The energy of solar radiation which is imparted to a celestial body per one 
square meter of surface area per one second of time is (Ref. 21) 

2 

= 135o ÖL] Mies 
V r/ •2 **< 

(186) 
m  sec 

Where r0 is the mean distance of Earth from Sun, and r is the distance of the 

body from Sun. 

The force on the body generated by this energy can be expressed as 

F    =Sil_tRicos2a    [newtons] 
SR C L     m J 

(187) 

where R is the reflection coefficient, R = 0 for an absolute black body, and 
R = 1 for a specular surface, c is the velocity of light, and a is the angle of 
incidence with the surface. 

For a sphere, this equation reduces to 

newtons 2 S(l t SI 
SR C .   nf 

(188) 

The acceleration produced by this force will be 

m 
*   = Ka

A 
SR        SR   m r > [_sec 

(189) 
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where A is the reference area, and m the mass of the body. 

The direction of the acceleration is away from the Sun, and thus it opposes 
the Sun's gravitational attraction.   The components of the acceleration are 
found by multiplying a<(. by the direction cosines f. , rj   , £ 

**-«*?., (190a) 

YSR - - aSH n (190b) 

ZSK=-aSR?: (1900) 

It must be noted that the direction cosines f0, » ,  ^ are defining the 

direction Earth-Sun.   However, for close satellites, the error introduced by 
using them for satellite-Sun direction is negligible. 

The radiation pressure is experienced by the satellite only at times when 
it is in the sunlight.   The angle 0 between the two vectors in the directions to 
satellite and Sun is found from 

cos 9 - ?? + -or, - rr (191) 

The satellite is always in sunlight 

when 

r sinö > RF 

If r sin 9 < R,., the satellite is in sunlight only when simultaneously cos 8 > 0. 

G.   INTEGRATION OF THE EQUATIONS OF MOTION 

Integration methods can be, generally, placed in three groups:   (1) self- 
starting techniques, (2) difference techniques, and (3) predictor-corrector tech- 
niques,   Although all three techniques have been used in orbit integration, the 
self-starting methods have a distinct advantage in orbit determination programs. 
The advantage stems from the fact that the integration must be done between 
two arbitrary observation times, but the last two techniques, normally, employ 
a constant integration interval.   Moreover, the differential equations for a close 
Earth satellite are of second order in which the first derivatives are included. 
Most of the standard methods of the second and third type used in astronomical 
orbit integration have been developed for the special case in which the first 
dorivatives are absent (Ref   22).   The disadvantage of the self-starting methods 
lies, mainly, in the computing time required for the integration.   However, 
this can be compensated to a large extent by incorporating methods which vary 
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the integration step size and/or estimaU and adjust the error according to some 
criterion. 

Errors in numerical integration are due to two causes:  truncation and round- 
off.   Truncation errors are caused by the replacement of the actual differential 
equations by ordinary difference equations and omission of hi oner order terms. 
The round-off errors are due to the finite number of digits carried in the com- 
putations.   Not much can be done about the round-off error3 besides increasing 
the number of digits.   The truncation errors, however, can be controlled to 
a certain extent by varying the integration interval.   Two types of techiques 
generally are used for this purpose.   One technique estimates the truncation 
error and adjusts the integration interval and error after at initial integration 
step has been computed.   This involves additional computations and thus, in 
part, cancels the benefits. 

In cases where the nature of the differential equations is known, the criterion 
can be determined in advance and each step size determined automatically. 
Thus, considerable savings in time can be gained.   A technique of this kind is 
used in the present application.   The rule for the step size is 

Ah-kr (192) 

where Ah is the integration interval, r is the distance from the center of the 
Earth, and k is a constant for the orbit, determined as follows. 

At perigee 

and 

thus 

r A9   = V     Ah per 

Ah =-r=— r = kr 
per 

A6-    (c\ 
1 + e  \vj 

1/2 

k=T^(~) (193) 

Where A9 is dependent on the integration method.   It was found that optimum 
values of A6 are obtained from the following empirical expression: 

A0 = Cj + c2 exp (- c3 eJ (194) 

Where e is eccentricity and c{i c2, c3 are constants which depend on the in- 

tegration method.   The criterion gives approximately equal arc lengths for the 
integration intervals. 
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The most popular of the self-starting techniques has been the fourth order 
Runge-Kutta method.   A similar method, which compares rather favorably 
with the Runge-Kutta method, has been developed by Bowie (Ref. 23).   This 
method is based on the assumption that the second derivatives vary quadratically 
over the integration interval. 

In the present effort, these methods are applied in a direct integration mode. 
In a broader sense it could be classified as the Cowell's method.   A different 
principle is employed in the Encke's method.   In this method the coordinates 
are not obtained directly, but rather the integration is performed on the differ- 
ence between the actual coordinates and the coordinates of a conic section. 
The conic section is obtained from the position and velocity components at a 
particular instant, called the epoch of osculation.   The departures from the 
osculating orbit are called perturbations.   If the perturbations are small, they 
can be expressed by fewer significant figures, which permits larger intervals 
than with the direct integration methods.   When the perturbations increase 
to an intolerable size, a rectification of the orbit is required.    The position 
and velocity components are determined at a new epoch and the integration 
restarted. 

The application of the Encke's method in close satellite orbit determination 
programs is impaired because of the irregular intervals between observations 
which complicates the solution of the two-body equations.   In any case, a definite 
superiority between the Encke and Cowell type methods in modern computer 
applications has not been established. 
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APPENDIX 

A.   EQUATIONS OF MOTION IN RECTANGULAR COORDINATES 

Equations will be developed for motion in an inverse-square central force 
field.   x\ccording to Kepler's laws, the path of such motion is a conic section 
with the central mass occupying one focus.   We will first consider an elliptic 
motion.   An ellipse is formed if a point moves in such a manner that the sum 2a 
of its distances r} and r2 from two fixed points, the focuses, is a constant, i. e., 

r  - i\ = 2a = const (A. 1) 

where a is the semimajor axis.   In a Cartesian axes system with the origin at 
one focus 

9 9 9-9 
x- + y* = r," sir (A.2) 

and 

(x -xp)2 + (y-yF)
2 = r2 (A.3) 

where x^, y   are the coordinates of the vacant focus. 
r        r 

Substituting Eqs (A. 2) and (A.3) into Eq (A. 1) we obtain 

2 2 1/2 

Mx' + y2) (A. 4) 2TX 
y
- + 2a y + \a " 

4 + 
4a 

^ 

In this axes system (Fig A. 1) 

xF = 2 € cos 53 

yF = 2 € sin w 

where c is the linear eccentricity and co is the angle between the major axis (posi- 
tive direction toward apocenter) and x-axis.   Hence 

(2€)2  = x2
F + y2 

and evaluating the third term in Eq (A. 4) we obtain 

a2-e2 

a 

Linear eccentricity can be also expressed as 

(A. 5) 

<r2 = a2-b2 (A. 6) 
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where b is the semimir.or axis.   Substituting (A. 6) into (A. 5) we obtain 

2 

^ -  C (A. 7) 

which is an expression for the semilatus rectum.   Equation (A.4) can now be 
written 

e cos ÖJx^esincöy^C = r 

where e is the numerical eccentricity (or simply eccentricity) 

€ e =l 

Substituting A = e cos C3, and B = c sinu we obtain 

A x + B y + C  - r (A. 8) 

which is the equation of an ellipse in rectangular coordinates.   Differentiating 
Eq (A. 8) with respect to time we obtain 

(A r - x) x + (B r - y) y = 0 (A.9) 

For a motion in a central force field with the force varying inversely as the 
square of the distance from the central mass, the following relationship holds 

h2 = nC 

where h is the angular momentum about the center of force.   Expressed in rec- 
tangular coordinates, the angular momentum is 

h - x y - y x 

which gives 

(xy- yx)2  = nC (A. 10) 

Equations (A.8), (A.9) and (A. 10) completely define the motion.   Identical equa- 
tions can be obtained for a parabola and a hyperbola following the same procedure 

From the definition of A and B it follows that 

e=(A' + B^) (A. 11) 

For a case y = 0, the expressions reduce to 

(1 - A) x_ = C (A. 12) 

(1 - A)xu = Byu (A. 13) 

x   y    = (^C)1/2 (A. 14) 
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Solving for the planar orbital elements A, B, and C 

A 

B 

C 

x y2 

Equations (A. 8), (A. 9) and (A. 10) can be solved for the velocity components 

1/2 

(A. 15) 

(A. 16) 

(A. 17) 

B^   ^ 
x = ±  j-*   (£) (A. 18a) 

^/2 _ A r - x 
y = + —i— (g) (A. 18b) 

where the upper signs are for a direct motion, and the lower signs are for a 
retrograde motion.   When y = 0, x=x^=r and the equations reduce to 

XU.= ±B(£) (A. 19) 

y^ = "(A-l)(£) (A. 20) 

B.   EQUATION OF TIME 

We can write Eq (A. 8) in a canonical system in which the x-axis points to- 
ward the pericenter and the coordinates are normalized dividing by C. In this 
system A = - e, B = 0, and C = 1. 

/-2   _2\1/2 

-ex + 1 =Vx  +y; (A. 21) 

This equation can be solved for y 

r 2 2 l1/2 

y = ± [(e' - 1) x  - 2e x + lj (A. 22) 

or for x 

Jii"      ! -,i/2 
_ _ e - LI + (e   - 1) y „  (A. 23) 

e2-l 
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where only a negative sign before the radical applies in the chosen axes system. 
The relation between the coordinates x, y and x , y  is given by 

C x - x_£a * yw r\a (A. 24a) 

Cy     -x_na- y. |a (A.24b) 

The normalized area swept out by a radius vector from the x-axis to a point 
P (x . y ) is obtained by integration 
k        k      * k 

XX., —     — 

\= yy d x + "2- 
X=XR 

and substituting y 

.1/2 xby. 
x=xn _    — 

('      "    > 2 11/2 Xkyk 
A   = \    [(e- - 1) x  - 2e x + lj      dx + -g— (A. 25) 

X=XR 

Considering that 

1 
Xn   r" kP ~ 1 + e 

The integral (A.25) can be obtained for three cases 

A, -    |f - arc sin [~e + (1 - e2) x 1 - e(l - e2)l/2 y   [ if e < 1 
k 2 3/2  2 L kJ M (A.26) 

2(1-6^) v ' 

A,      e(e2 - 1)1/2 y  + In [e - (e2 - 1)1/2 y  - (e2 - 1) I 1 
k o 3/2    / k k "M 

2(e" - 1) 

if e > 1 (A.27) 

and 

y'    x  y 
A,. = ~--^-k , ife = 1 (A. 28) 

From Eq (A. 10) we can obtain the normalized, constant area rate 

1/2 

••*(*) (A. 29) 
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and the solution for time from pericenter to P (x , y ) is 
k        k 

Ak 
lk = T7 (A. 30) 

Returning to Eq (A.26), it can be shown, utilizing the geometry in Fig. A-2, that 

and 

sin 6,   = e + (A - e") x 

« 1/2 
cosGk  = (1-e')     yk 

Thus 8.  is the complement of the eccentric anomaly E 

E
k-!-

eK ify^° 

EK = a'-9. ify<0 

and we can write 

2   — cos E   = e + (1 - e ) x 

0 1/2 
sinER - (1 -ew)     yk 

which shows that Eqs (A. 26) and (A. 30) are another form of Kepler's equation 

Mk = Ek- e sinEk (A. 31) 

where 

.^1/2 

Mk = 1 - e 
2a 

•  lk" Kc 

Kepler's equation is transcendental in E and can be solved by successive approxi- 
mations, utilizing the derivative 

d^ 

dt,. 
1 

Kc(l - e cos ER) (A. 32) 

Similar considerations apply to the hyperbolic case.   Differentiating Eq (A.27) 
we obtain 
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dyh Bk  [(e
2-l)xte-e] 

dt 
KJ(Bke-l| [(e  - 1) xR - e)   - (e  - 1,     ?J 

(A. 33) 

where 

1/2 
B      e - (e" - 1) xR- (e2- 1)     yR 

For a parabola, a closed form solution can be obtained.   Given time t^ from 

pericenter to P (x,, %), the corresponding normalized area is 

A    - !l (A.34) 
Ak ~ K. 

wher 

.A 1/2 

If e = 1, Eq(A.21) gives 

X^-j— (A.35) 

Substituting Eq (A.35) into (A.28) we obtain a cubic in y 

t3v 12\ = ° 
The discriminant of this equation, A> 0, and, therefore, it will always have one 
real root 

r 2 l/2ll/3 r 2 1/2 V/3 

yk =    jßAk - (36Ak + 1)    J       +   [6AR - (36Ak + 1)' J (A. 36) 

and xR is obtained from Eq (A.35). 
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Fig. A-2. Ellipse in a Canon-'cal System 

Fin. A--;. Normalized Area 
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